
Grant agreement no.211714

neuGrid

A GRID-BASED e-INFRASTRUCTURE FOR DATA ARCHIVING/ COMMUNICATION
AND COMPUTATIONALLY INTENSIVE APPLICATIONS IN THE MEDICAL

SCIENCES

Combination of Collaborative Project and Coordination and Support Action

Objective INFRA-2007-1.2.2 - Deployment of e-Infrastructures for scientific communities

Deliverable reference number and title: D6.1 Distributed Medical Services Provision
(Provenance Service)

Due date of deliverable: Month 12

Actual submission date: 31st January 2009

Start date of project: February 1st 2008 Duration: 36 months

Organisation name of lead contractor for this deliverable: University of the West of England,
Bristol UK

Revision: Version 1

Project co-funded by the European Commission within the Seventh Framework Programme
(2007-2013)

Dissemination Level
PU Public X
PP Restricted to other programme participants (including the Commission Services)
RE Restricted to a group specified by the consortium (including the Commission Services)
CO Confidential, only for members of the consortium (including the Commission Services)

Table of Contents

 ... 2

Intended Recipients ... 3

8 The Provenance Service ... 4

8.1 Introduction .. 4

8.2 The User Requirements for the Provenance Service .. 5

8.2.1 Essential Requirements .. 6

8.2.2 Desirable Requirements ... 6

8.2.3 Optional Requirements .. 7

8.3 Existing Provenance Capturing Techniques and their usage in Provenance
Service ... 7

8.3.1 Wings/Pegasus Provenance System ... 8

8.3.2 Provenance Aware Service Oriented Architecture (PASOA) 9

 .. 10

 ... 11

8.3.3 Job Provenance (JP) in gLite ... 12

 .. 13

 .. 13

8.3.4 Provenance Query and Answer (ProQA) ... 13

8.3.5 Matching of User requirements .. 14

8.3.6 Technical Requirements .. 16

8.4 The Provenance Service Design .. 17

8.5 The Provenance Service: An Example Case Study .. 21

Intended Recipients

The WP6 workpackage entitled “Distributed Medical Services Provision” aims to design a
group of generic services that can be used in a number of related medical applications. These
will then be implemented in order to fulfil the neuGrid specific project requirements. The services
will be built according to the design philosophy presented in the WP6 deliverable. This will help
to enhance and promote their re-usability in other related applications.

This deliverable document presents a design philosophy that the generic services will follow,
maps user requirements against suitable services and briefly presents a list of the services. An
initial implementation of the services and their detailed API descriptions will be delivered in the
year 2 deliverable.

The WP leaders, technical users and neuGrid developers are the intended recipients of this
document. To a lesser extent, since indirectly concerned (through the natural abstraction of
Workflow/ Pipeline authoring environments such as the ones proposed in WP6), neuro-scientists
and prospective users (e.g. Pharmaceutical companies) as well as internal and external reviewers
of the project activities, are anticipated as potential readers of this document.

8 The Provenance Service

8.1 Introduction
The aim of the neuGrid project is to provide a user-friendly grid-based e-infrastructure, which
will enable the European neuroscience community to carry out research necessary for the study of
degenerative brain diseases. neuGrid will enable neuroscientists to archive large volumes of brain
imaging data and perform analysis using a range of post-processing algorithms. Analysis is
carried out using combinations of algorithms, which are integrated to form neuroimaging
pipelines. For example in order to determine the thickness of a cortex, MINC [52] executables are
combined together to form a cortical thickness pipeline. Such processes have a level of
complexity that may allow small errors to occur, which cumulatively have a large impact on the
validity of the results that are produced. Researchers therefore require a means of tracking the
execution of given pipelines so they can ensure that important results are accurate. This is a
manual task that is generally carried out before research is released to the wider community and is
published. The provenance service is primarily intended to capture and provide the information
that is necessary during this process.

The infrastructure will offer a Grid-based solution for such compute intensive pipelines, which
will help to reduce the computational cost. In order to support neuroimaging analysis, a range of
medical services will be developed. These will provide support for archiving the image data,
creating pipelines in a user-friendly environment, and planning and gridification of pipelines.
Furthermore such services will support the Grid execution of pipelines as well as provisions for
capturing analysis information and querying it. Services will be designed in a generic way so that
they have the potential to facilitate biomedical analysis in other projects (also described in Design
Philosophy Document.) The process of neuroimaging analysis may involve a number of issues,
which can cause an execution failure or undesired execution results. These may include incorrect
pipeline specifications, inappropriate links between pipeline components, execution failures
because of the dynamic nature of the Grid and others. A real problem in this scenario is tracking
faults as and when they happen. This is mainly because of the absence of an information
capturing mechanism during the pipeline specification, gridification and execution. Thus a user is
unable to track errors in past neuroimaging analyses. This may lead to a loss of user control or
repetition of errors during subsequent analyses. Users may face a range of problems in such
cases, which may prevent them from being able to:

• Reconstruct a past pipeline or parts of it to view the errors at the time of specification.
• Validate a pipeline against a reference specification.
• Validate pipeline execution results against a reference dataset.
• Query information of his interest from the past analysis.
• Compare different analyses.
• Search annotations associated with a pipeline or its components for future reference.

To address the aforementioned problems, the generic medical services layer of neuGrid involves
a process of keeping track of the origins of the data and its evolution between different stages and
services. This process is called provenance and it will allow users to query analysis information,
automatically generate analysis pipelines, detect errors and unusual behaviours in past analyses,
and validate analyses. Tracking provenance data is important as it is useful in identifying the
problems and errors that commonly occur during neuroimaging analysis. Provenance will support
the continuous fine-tuning and refinement of the pipelines by capturing:

4

1. Pipeline specifications.
2. Data or inputs supplied to each pipeline component.
3. Annotations added to the pipeline and individual pipeline component.
4. Links and dependencies between pipeline components.
5. Execution errors generated during analysis.
6. Output produced by the pipeline and each pipeline component.

The neuGrid infrastructure will incorporate a provenance service, which will interact with other
medical services through standardized interfaces. This service-oriented approach also allows
centralized management and the on-line availability of the provenance service (Design
Philosophy Document explains the features of SOA-based design of services in neuGrid). A
conceptual model of the provenance service and a scenario of user interaction is shown in the
Figure 40. The next few sections of this document explain the user requirements of the
provenance service, the design, service components and relevant technologies that have been
evaluated in the light of user requirements.

Figure 40: A conceptual model of Provenance Service

8.2 The User Requirements for the Provenance Service
The neuGrid consortium has identified a number of user requirements that are relevant to the
development of the provenance service. These provide a set of functionality that end users of the
infrastructure will expect to be available to them in the final system. The group of requirements
mentioned in this section have been gathered by WP9 during discussions with user communities.
Surveys and meetings have led to the creation of a range of stories, with each story explaining a
process of user interaction with the service component/interface. Individual Use-cases have been
extracted from the stories and this has allowed us to identify a number of individual user
requirements. Requirements engineering is an iterative process and new requirements may be
added as the provenance service evolves. Prototypes of the provenance service will be evaluated
by user communities and the requirements will provide a means of evaluating the functionality
that is developed. This process will help in identifying and meeting any elements that are missing.
The user requirements are categorized in terms of priority as essential, desirable and optional

5

requirements.

8.2.1 Essential Requirements
Essential requirements are those that must be met by the provenance service. These define the
core provenance service functionalities that are necessary in order to build an operational system.
The major characteristics of such a system will be:

a. The business logic should be correctly implemented and tested to fulfil basic user needs.
b. It should be well deployed and available to the user communities.
c. Provide a preliminary user interface for interaction with the service.

8.2.1.1 Capturing Specification and Execution Information (Ref. Prioritized use-cases and
requirements: 6.1.1 and 6.1.2)

This is an important requirement, which will allow a user to store a complete pipeline creation
process. It will involve capturing each and every pipeline actor with its input and output details.
The links between actors will need to be stored in order to make it possible for users to retrieve
parts of a given workflow. All the intermediary steps of pipeline planning will also be captured.
These deal with the gridification of pipelines in preparation for their execution on Grid
resources. After the creation and planning processes, pipelines will be executed over the Grid.
The result of an execution can be a success or failure. Therefore, it is important to store these
results, error logs and other monitoring information that is provided by the Grid middleware. This
will help a user to associate a particular analysis result with the specification.

8.2.1.2 Version Control Management (Ref. Prioritized use-cases and requirements: 4.4.1,
4.4.2 and 4.4.3)

Managing different versions of pipelines is necessary in order for experimental workflows to be
gradually developed in a controlled process and eventually reach full maturity. A provenance
store will need to make it possible for a user to track changes in different versions of a single
pipeline specification. If several scientists/users are working on a particular analysis, versioning
should help them to maintain the history of changes that occur in a pipeline. Therefore version
control management is important for maintaining the ownership of pipelines and their evolutions
with time. Versioning will also help users to analyse the difference in the outputs produced by
different versions of a pipeline. These differences will be highlighted by the provenance data. All
of this clearly requires a convenient means of capturing, storing and using versioning
information.

8.2.1.3 Browsing and Validation (Ref. Prioritized use-cases and requirements: 5.1.1 - 5.1.5)

Provenance data is only useful if the information that is collected is made viewable to the user.
This will include enabling the browsing of past traces of workflow specification and their
respective execution information. Inaccurate specification at the time of pipeline creation or a
resource failure during execution may produce erroneous results. Therefore the validation process
will need to assist users to validate pipeline specifications against existing reference blueprints.
This will also allow a user to validate execution results against a reference dataset. The
integration of different aspects of provenance data is clearly useful in providing users with
information that is of use to them during their research work.

8.2.2 Desirable Requirements
These requirements are clearly important in driving the provision of a well integrated and fully
featured provenance service. Such requirements represent features which will enrich the
functionality of the system. This will also enable users to benefit from the best possible mixture
of features from the service. Desirable user requirements represent useful features which should

6

be supported once all the essential requirements have been addressed.

8.2.2.1 Querying and Searching interesting information (Ref. Prioritized use-cases and
requirements 6.3.1 - 6.3.3)

The ability to query provenance data is an important requirement, as it will assist users in
accessing information. This may involve the querying of data through SQL like statements. A
user should be able to select a particular view of the data for specific analysis purposes. This
requirement could be addressed through the provision of a querying interface on the top of
provenance database. Users should be able to query data in a generic fashion, irrespective of
which database is used at the backend and how the data is stored or maintained. The querying
interface will help users to retrieve a selected dataset from the provenance store. Users are likely
to want to search for interesting information such as what failure happened at what point and the
reason of failure etc. This requirement could be met by making different views of provenance
database, based on the search categories. It is clear that this will require the definition of what
categorises interesting information. Such definitions will need to be extendable and flexible in
order for them to evolve over time as the requirements of users develop.

8.2.2.2 Storing User annotations (Ref. Prioritized use-cases and requirements 6.5.3)

A user may want to add extra information into the provenance database regarding an actor or a
pipeline. Enabling users to add annotations in the provenance database will satisfy this
requirement. User annotations will serve as the metadata for the provenance data. It is likely that
such information can be exploited elsewhere in the system.

8.2.2.3 Comparative analysis (Ref. Prioritized use-cases and requirements 6.4)

A user should be able to perform comparative analysis of the output produced in relation to a
reference output. This requirement is similar to validation but in a comparative analysis a user
does not know the authenticity of the reference output/dataset in advance.

8.2.3 Optional Requirements
Optional requirements in the provenance service will be addressed if the time and resources are
available after meeting essential and desirable requirements.

8.2.3.1 Downloading Provenance Data (Ref. Prioritized use-cases and requirements 6.4.3)

A user should be able to download data objects in the provenance database, which may include
input/output images and their associated metadata. This will enable a user to perform a statistical
analysis on data or images.

8.2.3.2 Format Conversion (Ref. Prioritized use-cases and requirements 6.4.5)

Users will be provided with a tool to convert images into different formats so that they can
visualize the results in a tool of their choice.

8.3 Existing Provenance Capturing Techniques and their usage in
Provenance Service

Several projects are currently working to provide methods of maintaining an execution history
for distributed workflows. These often differ from each other in scope and approach. A
comprehensive survey of some popular provenance systems has been carried out. Such systems
support the documentation of the process of scientific analyses. A thorough review and analysis
of existing technologies has identified some individual components from within them, which are
relevant to the design of the provenance service. Functionalities which are not provided by

7

existing systems nor have very specific requirements will be developed and integrated within the
final service. This section focuses on some of these existing provenance techniques and
evaluates them against what is required by the provenance service.

Figure 41: Workflow Refinement Process in Wings/Pegasus Provenance System

8.3.1 Wings/Pegasus Provenance System

The Wings/Pegasus framework [43] supports scientific workflows that involve a large number
of computations on huge scientific datasets. The focus of this framework is to provide
automatic generation, validation and resource selection facilities to deal with increasing
computational jobs and data sources in scientific workflows. This system [44] produces
provenance information at application and execution levels. Wings is used as workflow
specification environment and uses semantic representations [45] to reason about application-
level constraints and user annotations associated with the workflow. This execution
independent workflow information/metadata not only helps in generating valid workflow
specifications but also producing new workflow data products. All the provenance information
regarding the workflow specifications is stored in workflow library (WL). Wings sends the
workflow specifications to Pegasus, which then maps the specifications over the available Grid
resources. This process involves various refinement processes such as workflow partition, site
selection, data staging, data registration and job clustering. The refinement process in Pegasus
is shown in the diagram below. The initial workflow specification is partitioned into various
workflow instances, considering the dependencies in them. The individual workflow instances
are then passed through the process of refinement and are eventually submitted to Condor
DAGMan execution engine. This process continues for all the workflow instances. The
execution level provenance information is stored in the provenance tracking catalogue (PTC).

8

Upon successful executions the job executable name, arguments start time for execution,
duration of each job and compute element (CE) information is stored in PTC. For an
unsuccessful execution the error message and exit status is stored. Wings/Pegasus provenance
framework is shown in Figure 41.

 8.3.1.1 Wings/Pegasus-based Architecture

The Wings/Pegasus framework passes workflow DAGs to the Condor DAGMan execution
engine. This is not in line with the technical requirements of project as the workflow
specification and execution should be middleware independent. Therefore, a software layer can
be added to interface Pegasus with the Glueing Service. This architecture is shown in figure 42.

Pros Cons

Support Task-based WFs Ontology and semantic representation
have no use in the project

Specification and execution
logging

Different query interfaces for WL and
PTC

 Extra overhead of interfacing Pegasus
with Glueing Service

 Provenance information is stored in a non-
customized database schema

Figure 42: Wings/Pegasus-based Provenance Architecture

8.3.2 Provenance Aware Service Oriented Architecture (PASOA)

PASOA [46] is a provenance capturing mechanism in web services environment. Therefore,
this architecture mainly supports provenance in service-based workflow management systems
[42]. The workflow dataset transformations are recorded during workflow execution. PASOA
manages all the provenance recordings in a provenance server. It provides a client API to allow
client applications to interface with the server. The provenance server holds the provenance
information and provides methods to access and update this information through a web service.
The provenance information is stored in a relational database, as shown in Figure 43.

The client API is responsible for submitting the web service invocation credentials, as the
workflow enactment engine executes the workflow. The service credentials are extracted from
the workflow script, represented in a workflow language such as WSFL or BPEL4WS. The
workflow script describes the order in which the web services are invoked and also defines the
control and data flow between services. PASOA also provides a browsing interface, which
allows users to navigate through provenance traces of past workflow executions. A provenance
reasoning facility is also provided in order to validate the workflow execution results. The
validation process allows a user to check if the web service invocations produce the same
results as in the past workflow executions.

9

Figure 43: PASOA Architecture

PASOA handles this process by re-invoking a service and a difference in results in notified,
which is also logged in provenance database. A screenshot of browsing and validation interface
is shown in Figure 44.

Figure 44: Browsing interface in PASOA

10

8.3.2.1 PASOA-based Architecture

PASOA stores execution logs and specification provenance in an XML database, called
Provenance Database. PASOA’s client interfaces provide APIs to populate XML database with
provenance information. As PASOA supports remote execution in a service-based environment
therefore its APIs are tied with service-based workflow systems. Whereas, technical
requirements of project require a provenance system to capture execution logs of task-based
workflows. Moreover in neuGrid the pipeline execution takes place via glueing service
therefore client APIs should be able to interface with glueing service. This section proposes an
architecture, which uses PASOA client APIs for capturing specification provenance only. The
execution logs are stored in a relational database and this database is populated by glueing
service, through the client interface shown in Figure 45. Moreover specification level
provenance can be merged with the relational database through XML to relational translations,
to have a single database view.

Figure 45: PASOA-based Provenance Architecture

Pros Cons
Support Task-based WFs Partial usage of PASOA Client APIs
Specification and execution logging Overhead of writing XML to relational

translator
Database schema is customizable
PASOA provides a browsing interface
to browse provenance traces

11

8.3.3 Job Provenance (JP) in gLite

Job Provenance (JP) [47] is a component of gLite Grid middleware and developed with in EU
EGEE project. The motivation of JP is to verify the workflow execution results by redoing the
experiment. JP is a job-centric service and collects enough information about job life cycle,
inputs/outputs, user annotations etc. This information is kept in a Logging and Bookkeeping
(L&B) service, which enables JP to re-execute a workflow/job. JP keeps a long-term trace on
the completed workflow computations, irrespective of space constraints in L&B. JP organizes
the data collection, for re-executing the job/workflow, in three ways (i) It stores all the inputs to
the job/workflow, JDL (Job Description Language) and the job input files, which are fetched
from the middleware sandbox (ii) It keeps a complete execution trace on the compute element
(CE) i.e. when and where the job is planned and executed, job submission count and
environment settings on CE (iii) It keeps a record of user annotations added on the job or
workflow. A data flow in gLite job provenance is shown in Figure 46.

Figure 46: Data flow in JP

JP mainly focuses on the job re-execution of a job from the provenance data and does not
provide any intelligent information from its provenance store. This provenance system is also
tightly integrated with gLite middleware and cannot interoperate with other Grid middleware.

8.3.3.1 JP-based Architecture

This architecture is tied with gLite and therefore it does not involve glueing service for
workflow execution. The pipeline specifications are directly passed to the user interface of
gLite, after appropriate translations into JDL/DAG. The gLite Workload Manager System
(WMS) schedules the workflows/jobs for their execution on CE. The execution logs are stored
in L&B where JP adds JDL/DAG related data. JP also adds workflow annotations in L&B, after
the execution is performed. This architecture is shown in Figure 47.

12

Figure 47: JP-based architecture

Pros Cons
Support Task-based WFs Middleware specific approach
Simple to implement Execution only provenance

8.3.4 Provenance Query and Answer (ProQA)

ProQA [49] is a prototype provenance system and implemented under the context of Taverna
[42] workflow workbench, which is targeted for bioinformaticians. ProQA supports provenance
retrieval as well as provenance abstractions, aggregations and semantic reasoning. This system
uses various third party tools to support its provenance mechanism such as RDF Access API,
Analysis API, Core API and knowledge template plug-in. ProQA defines ontological
representation of provenance data and this information is then represented in graph structure
using resource description framework (RDF). A provenance graph is generated from the initial
execution of workflow and upon the subsequent executions the graphs are merged into multi
and mega graphs. This way ProQA forms a Provenance Web, where everything is represented
by a Life Science Identifier (LSID) [50]. A detailed architecture of ProQA is shown in Figure
48.

13

Figure 48: ProQA Architecture

The knowledge template plug-in, provided by Taverna, allows the users to annotate additional
metadata with the workflow. The workflow specifications along with the annotated metadata
are passed to workflow enactment engine for execution. Taverna assigns an LSID to each
workflow component before its execution, and this LSID serves as a reference for each
workflow component. The execution information is stored either in a customized relational
database or in Baclava storage, which stores default execution information. Workflow metadata
or external ontological representations are stored in KAVE [51] storage. An external API set,
as shown in Figure 48, are used to query provenance information, build multi and mega
provenance graphs and analyse the provenance information in these graphs.

8.3.5 Matching of User requirements

Previous sections describe a summary of the state of the art provenance systems. The possible
architectures for the development of provenance service and pros and cons of each architecture
were also described. This section focuses on matching user requirements against each of the
proposed architecture.

Essential Requirements

14

 User Requirements
Specification
Level
Provenance

Logging
execution
information

Browsing
execution
information

Validate a
workflow using
provenance data

Possible
Provenance
Architectures

Wings /
Pegasus
System

Supported

Supported

Not Supported

Supported

PASOA Supported Supported Supported 2 Supported
JP Not

Supported 1
 Supported Not

Supported
 Supported

ProQA Supported Supported Not Supported Supported

Table 8: Matching Essential requirements with existing provenance system

1. JP has no interface for the workflow authoring environment and therefore it does not
support capturing workflow specification provenance.
2. PASOA provides a web interface to browse workflow traces, of past workflow executions.
The provenance trace browser is also shown in Figure 44.

Desirable Requirements

 User Requirements
Query
Interface

Annotate
workflows

Comparative
analysis of
output data
produced 1

Control
versions of
workflows

Searching
interesting
information for
user 2

Possible
Provenance
Architectures

Wings /
Pegasus
System

Supported

Supported

Not
Supported

Supported

Not
Supported

PASOA Supported Supported Not
Supported

 Supported Not
Supported

JP Supported Supported Not
Supported

 Supported Not
Supported

ProQA Supported Supported Not supported Supported Not supported

Table 9: Matching Desirable requirements with existing provenance system

 1. All the provenance techniques mentioned in section 8.3 do not support a comparative
analysis of the output data to a reference data set. This is an internal project requirement,
which can be addressed by developing a tool on the top of provenance database.
 2. Enabling a user to search interesting information, such as execution failure at a certain
point, is another internal project requirement.

Optional Requirements

 User Requirements
Statistical
Analysis of

Format Conversion
Tools 2

15

provenance data

Possible
Provenance
Architectures

Wings / Pegasus
System

Not Supported Not Supported

PASOA Not Supported Not Supported
JP Not Supported Not Supported
ProQA Supported 1 Not Supported

1.

Table 10: Matching Optional requirements with existing provenance system

1. The multi and mega graphs in ProQA, built from ontological data, help in the analysis of
provenance data.
2. Format conversion tools allow a user to convert the output into appropriate formats, which
can then be used for visualizing the execution results.

8.3.6 Technical Requirements

Besides the user requirements, the neuGrid project has few technical requirements too, which
should be considered when designing any generic medical service. These requirements are:
1. In neuGrid pipelines are gridified and then executed over the Grid. Therefore the provenance
service should be able to store remote execution results.
2. The services should be middleware agnostic that is the pipelines should be able to run on any
Grid middleware. This implies that the provenance service should also be able to store job
execution information without being tied to any particular middleware.
3. The processes/components in a pipeline are tasks rather than services. Therefore, the
provenance service should have support for task-based workflows.
4. The storage system should be a relational database, enabling a user to retrieve provenance
information/results through SQL queries.

The following table matches technical requirements with the existing provenance systems,
discussed in section 8.3.

1. The provenance systems, mentioned in section 8.3, are mainly integrated with some
middleware to capture execution level information.
2. PASOA and ProQA support capturing provenance of service based workflows

Technical
Requirements

Wings/Pegasu
s

PASOA JP ProQA

Distributed execution Yes Yes Yes Yes

Grid Middleware
Agnostic

No1 No1 No1

No1

Task-based Workflow Yes No2 Yes No2

Relational Database Yes No Yes Yes

Table 11: Matching technical requirements with existing provenance systems

16

The survey of provenance literature has helped in identifying essential components of an
effective provenance system. The objective of this review was to explore that how some
popular provenance capturing techniques have been implemented. Different possible
architectures, for the provenance service, have been studied and analyzed based upon their
advantages and disadvantages. Each provenance architecture, using existing systems, has been
matched with all three sets of user requirements. This practice has helped in finding provenance
architectures, which are closer to or inline with the project requirements. This has also provided
suggestions that which of the components in existing systems can be used in the design and
which need to be developed. Therefore an analysis of provenance systems, their proposed
architectures and their match with the user requirements has played an important role in
designing the provenance service.

8.4 The Provenance Service Design
The design of the provenance service has been derived from the initial set of requirements that are
described in section 8.2. The current design focuses on fulfilling all the essential and desirable
requirements. Once these requirements are met, optional features will be added in the provenance
service as described in section 8.2.3. Figure 49 shows the design diagram where on one side of
the provenance service is client applications and on the other side of it are grid resources. The
client applications are essentially other WP6 services which would be responsible for the creation
of analysis pipelines and their execution over the Grid. These along with grid resources will
populate the provenance database through recording interfaces. Later the analysis history of
pipelines will be provided by the querying interfaces of the provenance service. A case study of
the interaction of the provenance service with different WP6 services is shown in section 8.5.

Generic medical services (WP6) in neuGrid are based on a Service Orientated Architecture
(SOA). An SOA means that developers need to deploy services within a service layer. The core
business logic may reside on different application servers and interfaces are published in the
system. SOA is a commonly used architecture for the component-based development of a
specific application process. This enhances the mobility of code, as the user transparently
accesses services without knowing where they are actually located. This process is facilitated by
the lookup service and dynamic binding. Location transparency enables multiple instances of a
service running on different servers. Therefore if one server goes down the requests are redirected
to another one without users being unduly affected. Moreover, SOA improves the structuring of
the development process by encouraging the development of service layers. This allows specific
roles to be defined for different developer communities. For example, business logic developers’
work may work within the services layer whilst at the same time, front-end designers are
developing application interfaces in the user layer. The benefit of this approach is that different
development teams can work in parallel. This also improves application maintainability and
abates the difficulty of finding and correcting errors in code. The service logic in an SOA model
will enable neuGrid services to communicate with each other through their standardized
interfaces. This will also help other services to use/reuse functionalities provided by a specific
service to accomplish a particular task. The provenance service is designed in such a way that its
components will be available to all the other generic medical services in WP6. These components
will be handled through separate interfaces so that each interface is targeted for a specific group
of users, although these interfaces will be available to all user communities.

17

Figure 49: Provenance Service Design

The individual components of the provenance service are shown in Figure 49 and explanation of
each is given below:

8.4.1 LORIS Schema and Provenance DB

LORIS (On-line Research Imaging System) is a system which was designed for the collection,
management and processing of brain imaging data. It has been developed using a range of open
source software such as Apache, PHP and MySQL. The system has two major components, a
database schema for storing brain images and their associated metadata and a web-based portal
which provides access to the LORIS database. In the context of the provenance service the
primary role of LORIS will be to input the required MRI scans and metadata to neuroimaging
pipelines, and then store the results/images of pipeline executions. The database schema of
LORIS follows a relational model and therefore it can be easily extended. The LORIS schema has
been specifically designed in order to simplify its customization for different tasks. This may also
allow it to serve as a repository for pipeline specifications, relations between pipeline
components, user annotations, and the input files that are supplied to them.

8.4.2 Capturing
Capturing provenance will be a key component of the provenance service, as its interface

will allow a user/client service to store specification-level provenance and execution logs into the
provenance database. Section 8.2.1.1 identifies the main components that will be captured by the

18

provenance service. Section 8.6.1 highlights some important API functions, which will facilitate
the pipeline capturing/recording process. A basic overview of the pipeline capturing process is
shown in Figure 49-A. The capturing component of the provenance service will be able to store:

• Pipeline descriptions and version information.

• The head node of the pipeline.

• The input data supplied to the head node.

• A script or process associated with a workflow node.

• The type of a workflow node i.e. single process node or composite node.

• The successors of a workflow node.

• The predecessors of a workflow node and input data supplied to it.

• Metadata associated with each workflow node.

Figure 49-A: Capturing components of a pipeline

8.4.3 Browsing and Reconstruction

The browsing component will be built on the top of the provenance database, which will serve as

19

a utility for the users to browse the past pipeline traces. Browsing is not itself a core component
of the provenance service, rather it is a project requirement which will help users to interact with
and use the provenance database in a simplified way. A screenshot of the browsing component in
PASOA [46] is shown in Figure 45.

A pipeline comprises a start node, tasks or actors, successors and predecessors of an actor,
links/relations among actors, input data and files supplied to each actor, and a final output of
complete pipeline. The provenance database will store each of the pipelines constituent parts.
This will enable a user to retrieve a complete pipeline from the provenance store and also
examine sections of it with the appropriate dependencies. This is important, as it will allow users
to examine the various stages in the pipeline creation process even if they cannot remember each
and every step that they originally took. The reconstruction APIs will help a user to reconstruct a
pipeline or part of it for different purposes such as:

• Observing the pipeline creation process in past
• Re-executing a pipeline or part of it
• Modifying a pipeline and storing it with a different version

Section 8.6.2 highlights some important API functions for reconstructing and re-executing the
pipelines.

8.4.5 Validation

Users will specify neuroimaging pipelines by combining different analysis algorithms. The
pipelines will be gridified and the algorithms will then be executed over the Grid. The pipeline
designer/creator may define inappropriate links between different components. A change to an
analysis algorithm, residing on grid sites, may not always propagate to the user end. Therefore at
the time of creating pipeline its author is not aware of any change in the logic of an algorithm. In
these situations a user may receive corrupted or outdated execution results. The validation
component of the provenance service will enable a user to verify a current pipeline specification
against a reference blueprint. It will also allow a user to verify the results of an execution using a
reference dataset. This type of validation will be performed in two ways: a. Re-executing
algorithms in the pipeline and then comparing the results of the execution with the
reference/expected output will perform an online validation of the results. b. Offline validation
will verify the results of an already executed pipeline, in the provenance database, with a
reference dataset.

8.4.6 Modelling and Feedback

The Modelling and Feedback components are shown in dashed boxes in Figure 49. These are
optional features of the design and will be developed when all other components are available.
The Modelling component will analyse and group the provenance information that is stored in the
provenance DB. This will lead to the identification of groups of data that represents different
patterns that occur during pipeline specification and execution behaviours. The modelling process
will harness machine learning algorithms in order to categorize information segments that are
present in the provenance DB. Different techniques of evolutionary computing may be applied to
identify new information chunks and thus modelling will be a dynamic and evolving process. The
feedback component will be developed using the modelling information. The primary objective
of this component will be to provide users with useful information that is driven by the modelling
process. The role of this component will be similar to a decision support system, which will help
in pipeline construction and the planning process. This may, for example, suggest the use of a
specific analysis pipeline or recommend computational resources on which to run the job at a

20

given time. Both the modelling and feedback processes will be stochastic and their efficiency will
improve as the provenance DB grows. The modelling and feedback processes are also described
in section 8.7.

8.5 The Provenance Service: An Example Case Study
Section 8.4 mainly describes the components of the provenance service (ProS) and how these
components will facilitate other generic medical services in neuGrid, as shown in Figure 49. This
section explains a scenario in which two of the generic medical services (the Pipeline and
Glueing Services) feed data to the provenance database and then retrieve the provenance
information using ProS interfaces, as shown in Figure 50.

Figure 50: Provenance Service deployed in neuGrid

Pipelines will be constructed in different workflow/pipeline authoring environments. The
workflow specifications are represented in different forms of XML, depending on the authoring
environment such as MoML, SUFL, BPEL4WS etc. The Pipeline Service will translate all these
representations into a uniform XML specification. This will then be passed to the planning
component of the pipeline service, where the pipelines will be gridified in preparation for
execution. The gridified tasks/components will be passed to the glueing service, which will
perform a middleware agnostic execution of pipelines. The post execution logs, monitoring
information or errors (if any) will be passed back to the pipeline service. The pipeline and glueing
services design documents explain the process of pipeline gridification and middleware agnostic
execution in detail. The pipeline specification, planning information and execution results will be
stored in the provenance database through ProS client interfaces, which are described in section
8.6. Figure 50 explains the interactions of the Pipeline and Glueing services with the provenance
service. The salient features of the provenance database are that it:

• Enables the maintaining of different versions of workflows.
• Links annotations and execution information with particular versions of workflows.
• Maintains a relational model of the different parts of a workflow and the associations

21

among them.
• Allows the retrieval of a complete workflow specification, for reconstruction, re-

execution or validation.
• Helps in detecting unusual execution results.
• Could also support analysis and reasoning by modelling past workflow execution

behaviours.

8.6 The Provenance Service Interface
The Provenance service will have two primary service interfaces. These interfaces are (1) the
Recording Interface and (2) the Querying Interface. Each interface will provide a distinct set of
functionalities as described in section 8.4. These interfaces will be exposed in the form of
WSDLs, where each of them is focused for a specific user need. For example, a user who is
interested in logging/capturing a pipeline construction process will interact with recording
interface. On the other hand a user, who wishes to retrieve information about a particular analysis,
will interact with querying interfaces only. This approach of keeping different set of functions in
separate interfaces will make the service more manageable and easy to use. A detailed description
of each service interface is given sections 6.1 and 6.2.

8.6.1 The Recording Interface
The recording interface will enable a user to store specification level information. Provenance
APIs, for recording pipeline specification, facilitate a client application to log:

• Versioning information

Recording APIs will help a user to associate versioning descriptions with pipelines. This serves as
the metadata for a given pipeline and will include information such as version number, name of
the author, creation date and other details.

• Head node

Storing the head node of a pipeline is important in order to locate the start of an analysis. The
provenance service recording APIs will allow a user to store the head node, which is essential for
retrieving a complete pipeline with all its successor nodes and the links between them.

• Inputs to the head node

Input files and data supplied to head node will also be logged via recording APIs.

• Analysis scripts

Pipeline nodes/actors will represent a task in neuroimaging analysis. These tasks are usually
algorithmic scripts, whose output is passed to the successor nodes in the pipeline. The recording
APIs also help a user to store these scripts in the neuGrid database.

• Node types

Nodes in a pipeline can be of two types (i) a single process, (ii) a composite nodes. Single process
nodes in a pipeline represent a granular task that is responsible for a specific part of the main

22

analysis. Whereas composite nodes are constituents of two or more single process nodes. The
recording API will store the type of each node, which facilitates the reconstruction of a pipeline
or its components.

• Predecessor nodes

Inputs to a node, in a pipeline, may be more than simple data literals or files and could include the
output of predecessor node/nodes. This is shown in Figure 51 where MincDefrag is the
predecessor node of MinDefrag2. In order to store pipelines at a fine grained level, such
dependencies should be logged via the recording API.

• Successor nodes

Each node, single process or composite, in a pipeline can pass its output to a successor node. This
is shown in Figure 51 where CorticalSurface is the successor node of MincDefrag2. In the
process of regenerating a pipeline the successors of the start node and nodes after it will be
retrieved recursively. Storing successors and predecessors in a pipeline is important as this will
maintain a hierarchy during the reconstruction process.

• Annotations

The recording API will also provide a mechanism for the annotation of workflows. This will help
users to associate metadata, in key-value pairs, with a pipeline or its components. Users will be
able to retrieve annotations/metadata and view the past observations of an experimenter or
workflow author. Annotations will also help users to define new rules for a given pipeline. For
example a user might want to restrict a group (of users) to perform a particular analysis.

Figure 51: A sample pipeline specification

23

A list of some significant API functions of the recording interface is given in Appendix E.

8.6.2 The Query Interface

The query interface will enable users to retrieve provenance information, once an analysis is
completed and logged into the provenance database. The main objectives of query interface
are to:

• Enable a user to retrieve information from provenance database in SQL-like query
format.

• Retrieve a complete workflow description for re-executing the workflow.
• Retrieve execution results of a specific version of workflow.
• Enable a user to retrieve a specific part of a workflow along with its associated data

and files.
• Validate a workflow or part of it.

 A list of some significant API functions of query interface is given in Appendix E.

8.7 Future Work

Current provenance systems commonly capture records of past workflow executions and their
related behaviours. Users are then provided with a set of tools that allow them to query and
analyse the data that has been captured. This means that provenance information cannot easily
be used to fine-tune or refine the process of workflow specification. Clearly this has several
significant drawbacks, which include the repetition of common mistakes and an inability to
optimise workflow execution. Given the range and sheer size of the data that can be collected
through a provenance system, it is difficult for users to make sense of what it all means for
their individual research. In recent years techniques for data mining and integration have
developed at a rapid pace. With this in mind, a direction for future work is to explore how
such techniques can be applied within a provenance service. An intelligent feedback system,
which is based on the provenance information, may enable a user to specify workflow
components for their optimized execution during the specification phase.

Figure 52: Modelling Provenance data and providing a Feedback mechanism

Wide-ranging provenance information, both at specification and execution levels, can help in
building an effective suggestion/feedback based provenance system. Such a system can be
built by logging pre and post workflow execution events and then applying different analysis
techniques on the provenance information. These techniques can then help in building
different execution models of past workflow executions. Different machine learning
approaches can be used to build and identify the best execution models. These models will
evolve with each iteration of workflow execution and provide feedback to the specification

part of WfMS. Hence, a model-driven provenance system can facilitate a user to specify
workflows for their optimized execution. Figure 52 shows the process of modelling
provenance information. Analysis and reasoning are applied on these models to provide
effective feedback to the user. The need of an intelligent feedback mechanism is of paramount
importance when the workflows are executed over the distributed/Grid resources. As users
face a few performance and QoS issues when executing workflows in local environments
where performance parameters are normally under control. Moreover because of the dynamic
nature of Grid there may happen a number of transformations during the execution of a
workflow. These all cause a control-less execution of WFs over the Grid. Thus a suggestion
based process, built from the history data, is essential for the refinement of a workflow at the
time of specification.

8.8 Conclusion

The requirements analysis process has clearly identified the fact that keeping track of how
results are produced is important to users. In response to these demands, the Provenance
service will provide a means of capturing and maintaining workflow specification and
execution information in a workflow/provenance database. Existing provenance systems aim
to provide a documented history of distributed workflow executions. These systems use
different techniques for capturing and storing provenance information, depending on the
nature of the WfMS that is deployed i.e. task-based or service-based workflows. The neuGrid
project requires analysis to be performed by joining and linking together different scientific
tasks/scripts, which form task-oriented workflows. Moreover workflows will be planned and
gridified prior to their execution over distributed resources. This implies that the provenance
service will be capable of storing each task information into the provenance database, along
with pipeline creation steps. Each process in planning and gridification, by the pipeline
service, will also be logged. The provenance database will also link post execution results of
individual tasks with its information in a relational DB model. This data will be retrievable
and query-able in SQL-like format, to perform customized search operations.

Provenance service will provide recording and querying interfaces to store pipeline
information and retrieve already stored provenance information. These interfaces will be
published to user communities, following SOA design principles. Therefore a set of APIs will
be exposed, making the service functionality available online. The provenance service APIs
will also allow a user to retrieve a complete workflow or parts of it from the provenance
database. This information will be viewable in the workflow authoring environment, allowing
a user to reconstruct a past analysis. This process will help in validating an analysis against a
reference dataset and re-execute a pipeline or parts of it. The provenance service will also
facilitate other WP6 services because of its SOA-based design. This is also inline with the
neuGrid project requirements, which require all services to communicate with each other
through their standardized interfaces. Besides aforementioned service features, workflow
provenance has many potential research aspects. One such research area is the classification
of provenance data in different categories and modelling provenance information using WF
specification and execution details. Moreover finding the best specification and execution
models and providing user a feedback with such information will enable him to specify
workflows for their optimized execution. These research areas will be explored if time and
resources permit after the completion of provenance service.

8.9 References

 [40] Ilkay Altintas et al., “A Framework for the Design and Reuse of Grid Workflows” Intl.
Workshop on Scientific Applications on Grid Computing (SAG'04), LNCS 3458, Springer,
2005

[41] I. Taylor, et al., “The Triana Workflow Environment: Architecture and Applications”,
Workflows for e-Science, pages 320-339. Springer, New York, Secaucus, NJ, USA, 2007

[42] Thomas Oinn et al., “Taverna: a tool for the composition and enactment of
bioinformatics workflow”, Bioinformatics Vol 20(17) 2004, Pages 3045-3054

 [43] Deelman, E., Singh, G., Su, M., Blythe, J., Gil, Y., Kesselman, C., Mehta, G., Vahi,
K., Berriman, B., Good, J. Laiety, A., Jacob J., Katz, D., Pegasus: a Framework for
Mapping Complex Scientific Workflows onto Distributed Systems. In Distributed Systems
Scientific Programming Journal, Vol. 13(3), 2005.

[44] J Kim, E Deelman, Y Gil, G Mehta, V Ratnakar, “Provenance trails in the
Wings/Pegasus system”, Concurrency and Computatio: Practice & Experience Vol 20(5)
2008, Pages 487-497

[45] Gil, Y., Ratnakar, V., Deelman, E., Mehta, G., Kim, J., Wings for Pegasus: A
Semantic Approach to Creating Very Large Scientific Workflows. In The Eighteenth
Conference on Innovative Applications of Artificial Intel ligence, Vancouver, BC, July 2007.

[46] M Szomszor, L Moreau, “Recording and Reasoning over Data Provenance in Web and
Grid Services”, Lecture Notes in Computer Science 2003, ISBN 978-3-540-20498-5.

[47] A Křenek, J Sitera, L Matyska, F Dvořák, M Mulač, “gLite Job Provenance–a job-
centric view”, Concurrency and Computation: Practice & Experience Vol 20(5) 2008, Pages
453-462

[48] L Moreau, B Ludascher, I Altintas, R Barga, “The First Provenance Challenge”,
Concurrency and Computation: Practice & Experience Vol 20(5) 2008, Pages 409-418

[49] Jun Zhao, Carole Goble, Robert Stevens and Daniele Turi, “Mining Taverna’s semantic
web of provenance”, Concurrency and Computation: Practice and Experience 2007.

[50] Martin S, Hohman MM, Liefeld T. The impact of life science identifier on informatics
data. Drug Discovery Today 2005; 10(22):1566 – 1572.

[51] Zhao J, Wroe C, Goble C, Stevens R, Quan D, Greenwood M. Using semantic web
technologies for representing e-science provenance. Proceedings of the 3rd International
Semantic Web Conference, Hiroshima, Japan, 2004; 92 – 106.

[52] http://www.bic.mni.mcgill.ca/software/

	
	Intended Recipients
	8 The Provenance Service
	8.1 Introduction
	8.2 The User Requirements for the Provenance Service
	8.2.1 Essential Requirements
	8.2.1.1 Capturing Specification and Execution Information (Ref. Prioritized use-cases and requirements: 6.1.1 and 6.1.2)
	8.2.1.2 Version Control Management (Ref. Prioritized use-cases and requirements: 4.4.1, 4.4.2 and 4.4.3)
	8.2.1.3 Browsing and Validation (Ref. Prioritized use-cases and requirements: 5.1.1 - 5.1.5)

	8.2.2 Desirable Requirements
	8.2.2.1 Querying and Searching interesting information (Ref. Prioritized use-cases and requirements 6.3.1 - 6.3.3)
	8.2.2.2 Storing User annotations (Ref. Prioritized use-cases and requirements 6.5.3)
	8.2.2.3 Comparative analysis (Ref. Prioritized use-cases and requirements 6.4)

	8.2.3 Optional Requirements
	8.2.3.1 Downloading Provenance Data (Ref. Prioritized use-cases and requirements 6.4.3)
	8.2.3.2 Format Conversion (Ref. Prioritized use-cases and requirements 6.4.5)

	8.3 Existing Provenance Capturing Techniques and their usage in Provenance Service
	8.3.1 Wings/Pegasus Provenance System
	 8.3.1.1 Wings/Pegasus-based Architecture

	8.3.2 Provenance Aware Service Oriented Architecture (PASOA)

	
	8.3.2.1 PASOA-based Architecture

	
	8.3.3 Job Provenance (JP) in gLite
	8.3.3.1 JP-based Architecture

	
	
	8.3.4 Provenance Query and Answer (ProQA)
	8.3.5 Matching of User requirements
	8.3.6 Technical Requirements
	8.4 The Provenance Service Design
	8.5 The Provenance Service: An Example Case Study
	8.6 The Provenance Service Interface
	8.6.1 The Recording Interface
	8.6.2 The Query Interface

	8.7 Future Work
	8.8 Conclusion

	8.9 References

