
Grant agreement no.211714

neuGrid

A GRID-BASED e-INFRASTRUCTURE FOR DATA ARCHIVING/ COMMUNICATION
AND COMPUTATIONALLY INTENSIVE APPLICATIONS IN THE MEDICAL

SCIENCES

Combination of Collaborative Project and Coordination and Support Action

Objective INFRA-2007-1.2.2 - Deployment of e-Infrastructures for scientific communities

Deliverable reference number and title: D6.1 Distributed Medical Services Provision (Pipeline
Service)

Due date of deliverable: Month 12

Actual submission date: 31st January 2009

Start date of project: February 1st 2008 Duration: 36 months

Organisation name of lead contractor for this deliverable: University of the West of England,
Bristol UK

Revision: Version 1

Project co-funded by the European Commission within the Seventh Framework Programme
(2007-2013)

Dissemination Level
PU Public X
PP Restricted to other programme participants (including the Commission Services)
RE Restricted to a group specified by the consortium (including the Commission Services)
CO Confidential, only for members of the consortium (including the Commission Services)

Table of Contents

 Intended Recipients .. 4

6.1 Introduction .. 5

6.2 Pipeline Service User Requirements ... 7

 6.2.1. Workflow Authoring .. 7

6.2.2 Workflow Optimization ... 9

6.2.3 Workflow Execution and Results .. 10

6.2.3 Criteria to evaluate related projects ... 10

6.3 Existing Pipeline Authoring and Execution Environments 10

6.3.1 LONI Pipeline ... 11

6.3.2. Taverna .. 12

 6.3.3 Kepler ... 12

6.3.4 Triana ... 13

6.3.5. Poor Man’s Pipeline .. 14

6.3.6. Matching of User Requirements ... 14

6.3.7. Observations on Workflow Authoring Environments 15

6.4 Pipeline Gridification ... 16

6.4.1. MOTEUR .. 16

6.4.2 Pegasus ... 17

 6.4.3. Matching Technical Requirements ... 18

6.4.4 Suitability of Grid Enabling Frameworks ... 19

6.5 Enactment ... 19

6.5.1. Moteur ... 19

6.5.2 DAGMan .. 19

6.5.3 GRIA .. 20

6.6 Architectures .. 20

6.6.1 GRIA Based Architecture .. 20

6.6.2 Pegasus based Solution .. 22

6.6.3 Taverna – Moteur - A-C Architecture .. 23

6.6.4 Triana based architecture ... 25

6.7 Recommendations .. 26

6.7.1 Kepler ... 26

6.7.2 Pegasus ... 27

6.8. Pipeline Service Design ... 27

 ... 29

6.8.1 End to End architecture description ... 29

6.8.2 Pipeline Service .. 32

8.2.4 Pipeline Enactment .. 40

6.9 Research Issues ... 41

6.9.1 Introduction .. 41

6.9.2 Towards Intelligent Workflow Planning .. 43

6.9.3 Suitable Machine learning Approaches ... 44

6.9.3 Methodology ... 45

6.10 Conclusion ... 47

 Intended Recipients

The WP6 workpackage entitled “Distributed Medical Services Provision” aims to design a
group of generic services that can be used in a number of related medical applications. These
will then be implemented in order to fulfil the neuGrid specific project requirements. The services
will be built according to the design philosophy presented in the WP6 deliverable. This will help
to enhance and promote their re-usability in other related applications.

This deliverable document presents a design philosophy that the generic services will follow,
maps user requirements against suitable services and briefly presents a list of the services. An
initial implementation of the services and their detailed API descriptions will be delivered in the
year 2 deliverable.

The WP leaders, technical users and neuGrid developers are the intended recipients of this
document. To a lesser extent, since indirectly concerned (through the natural abstraction of
Workflow/ Pipeline authoring environments such as the ones proposed in WP6), neuro-scientists
and prospective users (e.g. Pharmaceutical companies) as well as internal and external reviewers
of the project activities, are anticipated as potential readers of this document.

6. The Pipeline Service

Neuro-imaging pipelines allow neuroscientists and clinicians to apply series of automated
transformations and processes on brain images for decision support purposes using complex and
nested workflows. Often these processes are very compute intensive and deal with large amounts
of data. Grid enabled neuro-imaging pipeline services are either proprietary or under research
and neuroscientists have to rely on command line scripts to design and execute the pipelines.
The role of the Pipeline Service is to enable scientists to create and design workflows in a user-
friendly fashion, to grid-enable and to enact these pipelines over a Grid, and finally allow users
to view the results of the execution. In neuGrid, the fundamental functionality of the Pipeline
Service includes the following:

• Enable the authoring of the pipeline in a user friendly environment, using the Neuralyze
executables as actors of the pipelines;

• Parallelize and Grid-enable the abstract user defined pipeline for optimal execution over a
grid;

• Submit and enact the pipeline for execution on Grid and
• View results of the execution as well as intermediary provenance data.

Processing pipelines (as shown in Figure 10) are compound jobs composed of several atomic
stages (each stage being an algorithm applied to an input dataset and producing an output
dataset). Each of these stages can be processed on different machines. Stages are chained (eg the
output of one stage is used as input for the next stage) but are not necessarily in series (stages can
be processed in parallel). Therefore, the Pipeline Service should offer a graphical pipeline
description mechanism to draw the structure of pipelines and a smart scheduler able to exploit the
pipeline's intrinsic parallelism by distributing processing on various Grid nodes (data-flow
control, load balancing, synchronization etc). Pipelines are of real interest when processing a
large number of input data rather than a single input. Through pipelines, the user can describe
once and for all the chain of transformations that each element of the input dataset should
undergo. The pipeline scheduler can process several elements in parallel on Grid nodes
(thousands of concurrent input images are expected for some medical applications).
Synchronization barriers may be needed to extract statistics from processed data at some point(s)
in the process flow. Therefore, pipelines should provide additional services such as
synchronization and provenance, logs of accomplished stages for a given input, restart from a
failed job, automatic resubmission of stages that failed for user-independent reasons, etc. The
following diagram shows a scenario where a pipeline is created and executed on a set of images.

The design of the Pipeline Service is dictated according to the design philosophy and constrained
by the neuGrid user requirements. All neuGrid specific user requirements as well as technical
requirements, evaluations of state of the art Grid pipeline services as well as design of the
neuGrid Pipeline Service are detailed in the Pipeline Service design document.

6.1 Introduction
The neuGrid generic medical services layer includes numerous components that facilitate the
execution of a neuro-imaging pipeline on a grid infrastructure. One of the central services
enabling this is the Pipeline Service. The functionality of the Pipeline Service is mandated by
specific requirements from WP6 and WP10.

 Figure 10: A conceptual model of a neuro-imaging Pipeline

The role of the Pipeline Service, as outlined earlier, is to enable scientists to create and design
workflows in a user-friendly fashion, grid-enable and enact the pipeline over a grid, and finally
allow users to view the results of the execution. The fundamental components of the Pipeline
Service are depicted in Figure 11.

 Figure 11: Components of a Pipeline Service

The WP6 Design Philosophy mandates that generic medical neuGrid services should be
developed on SOA principles. The SOA implementation adapted for neuGrid is the Web Services
Stack. Hence the Pipeline Service should be developed as a web service supporting a user-
friendly pipeline authoring front end. At the back end, the Pipeline Service should seamlessly
interoperate with various other WP6 services.

Web Services are built via standardized environments and interfaces. Because of standardized
interfaces, there is a potential for re-usability of the services in various configurations to enable
things for which the initial architecture was not designed to support. For example, neuGrid
requires a Pipeline Service, which can support NE actors and other neuro-imaging algorithms;
however the same service can be used for any other application in any environment as long as the
standard interfaces are used. The architecture itself is flexible, new services can be developed in
future and embedded into the architecture with minimal or no modification to any other services,
as they are loosely coupled. Finally because of standardized interfaces the internals of the service
can be developed on any platform, providing a platform independent solution.

The purpose of this document is to present a design of the Pipeline Service. The design is guided
by the relevant user requirements and the evaluations of the state-of-the-art technologies. The
document proceeds as follows: section 6.2 outlines relevant neuGrid user requirements, which
will govern the design of the Pipeline Service. Since a Pipeline Service can be divided into these
constituent parts: Authoring environment, grid-enabling and enactment mechanism, the
associated state-of-the-art projects are presented accordingly, in section 6.3, 6.4 and section 6.5
respectively. Section 6.6 presents tentative architectures of the Pipeline Service, outlining
advantages and disadvantages of each. Recommendations on the architecture are presented in
section 6.7. Section 6.8 presents the detailed end to end design of the Pipeline Service, using the
components, which most closely match user requirements. Section 6.9 presents research issues
and potential future work, which will be carried out as part of the Pipeline Service development.

The words pipeline and workflows are used interchangeably. A distinction in the document is
made between task-based workflows and services-based workflows. Task based workflows are
workflows which constitute of actors which are simple executable processes. Service based
workflows on the other hand, consist of workflows, which carry out interactions amongst web
services to complete a workflow.

6.2 Pipeline Service User Requirements
 neuGrid Pipeline Service has four primary components: Authoring, workflow planning,
workflow enactment and results retrieval and viewing. There are specific user requirements for
each component of the Pipeline Service. This section highlights the specific relevant user
requirements. It is necessary for any component of the Pipeline Service to be compliant with the
user requirements as they will be the primary means of judging suitability of software
components. These requirements will also guide the evaluation of the state-of-the-art
technologies.

The neuGrid user requirements are drawn from consultations with the potential users of the
system, and are not final. Requirements will evolve as the project proceeds. The stated
requirements in this section are written from a technical standpoint as opposed to the
requirements document, which documents requirements from a user perspective.

Following the separation of roles of the Pipeline Service in Figure 11, the requirements are
presented in a similar fashion.

 6.2.1. Workflow Authoring
 Workflow authoring is one of the essential components of neuGrid Pipeline Service. Workflow
authoring is further divided into: construction, editing, validation, annotation and visualization of
workflows. The following are the essential requirements under this category, as depicted in
Figure 12. These requirements are derived from the neuGrid User Requirements document. Each
category is detailed in subsequent sections.

6.2.1.1. Construction

Constructing pipelines is a fundamental task of the Pipeline Service. As per user requirements,
constructing a pipeline should involve the creation and editing of workflows by using a graphical
user interface (GUI). The GUI should support the construction of the pipeline by dragging and
dropping neuro-imaging algorithms, and stringing their outputs and inputs together to create
workflow.

The authoring environment should represent neuro-imaging algorithms as modules. It should be
possible for users to query for a particular module and use it in their pipeline, by dragging it form

the "toolbox" and dropping it in the pipeline authoring workspace. Users should be able to specify
input and output arguments of the module in the workspace. The environment should enable the
user to connect the output of a module to the input of a subsequent module. This connection
should be specified in a visual manner (i.e. connect the output of a module with a line to the input
of another).

Validation of constructed pipeline is also important during authoring. Before submitting a
workflow to the Grid, users should be able to check the validity of the pipeline from the authoring
environment. Validation involves checking if the output of a module is of the required format for
an input for another module. For example, if the input of a module requires numeric parameters,
it should not be connected to a DICOM image file input.

In order to facilitate construction of pipelines users should be allowed to string together complete
pipelines. Users do not want to be restricted to authoring pipelines where they have to construct a
pipeline by specifying module after module. Rather the authoring environment should be flexible
enough to enable the connection of entire pipelines. Selecting algorithms for authoring is a related
requirement. Users want a panel view which should list existing modules, and user should be able
to drag and drop those modules into their workspace, at the same time, users want to be able to
search and query for existing modules, in order to facilitate quick usage.

6.2.1.2 Editing Workflows

Editing already constructed workflow should be done in a similar fashion as
constructing new workflows. Editing workflows may involve operations such as changing input
parameters to certain modules or adding new modules in the pipeline.

Figure 12: Workflow authoring related requirements

6.2.1.3 Annotating Workflows

Annotations to workflows are important to the users of neuGrid. Users want to author pipelines,
document annotation on top of the pipelines, cluster modules together to form logical blocks, as
well as add general comments for themselves or other users. All these facilities should be
provided by the workflow authoring environment.

6.2.1.4 Extending the authoring Environment

neuGrid services are designed to be extensible and evolvable. The user workflow-authoring
environment will cover a wide range of modules. Requirements for new modules may however
arise as the system evolves. Hence users require an easy to use mechanism to add new modules.
Another crucial requirements is the user-specific configurability of the environment. Users may
want to modify the look and feel of the authoring environment to suite their use, as well as save
workflows/pipeline specific settings to their own custom user specific
directory/storage/repository.

6.2.2 Workflow Optimization
There are few user requirements about workflow optimization, as depicted in Figure 13. The
requirements for pipeline optimization are derived from specific tasks from the neuGrid Project
Proposal. Most of the requirements are from WP10, which covers the gridification and
optimization of existing pipelines.

Figure 13: Planning and Optimization Requirement

Because neuGrid constitutes a Grid of multiple sites, not all sites may have sufficient bandwidth
in order to enable seamless data sharing. Hence it is important for the pipeline optimization
mechanism to take data locality into considerations, if a site is executing a pipeline and the data is
available in the local site, the pipeline execution should stay local.

These set of requirements, depicted in Figure 14, deal with the control over execution of
workflows, as well as the viewing of results and errors in case they arise.

6.2.3 Workflow Execution and Results

Figure 14: Workflow Execution and Results

6.2.3.1 Workflow Execution and Control

After authoring a pipeline users want to submit it for execution. The Pipeline Service does the
appropriate workflow planning and optimization and starts enacting it to execute the pipeline. To
control the enactment and execution process users want various control functionality from the
Pipeline Service. Such control functionality includes the ability to restart the execution of a
pipeline and terminate it before completion.

An important requirement is to be able to execute a workflow step by step, in a debug mode, and
view intermediate data outputs and logs. Users also want monitoring information to be displayed,
and be notified of critical events as they arise.

The Pipeline Service should allow users to execute a workflow and process a complete set of
images, or execute it and process a single image.

6.2.3.2 Viewing Workflow Execution

neuGrid users have also specified specific requirements on the ability to view the output of a
pipeline. Users want up-to-date monitoring information, as well as seamless access to the
intermediate data produced while a pipeline is executing. Users also want notifications of critical
events.

6.2.3 Criteria to evaluate related projects
The documented user requirements define the role of the neuGrid Pipeline Service. The following
classification, as presented in Table 1, which is derived from the user requirements, will be used
to carry out the evaluation of related state-of-the-art projects.

6.3 Existing Pipeline Authoring and Execution Environments

This section outlines related evaluated projects. The purpose of this section is to survey and
explore what relevant solutions are already available and if any of the existing solutions satisfies

the user requirements. Some of the solutions may be open source; hence if they satisfy a subset of
the requirements they can be selected for extension in order to inculcate support for all
requirements. After the description of projects their evaluation with respect to the user
requirements is presented.

Easy Construction of Workflow

Ability to easily edit existing workflows

Annotation capabilities

Simple mechanism for adding new modules

Ability to query and select algorithms

 Optimize and Grid-Enable Algorithms

Ability to view results and associated Monitoring Data

Control Execution of a Workflow

Table 1: Evaluation criteria

6.3.1 LONI Pipeline
LONI Pipeline [30] provides a rich interface for creating and enacting neuro-imaging

pipelines (see Figure 15). It supports the creation of pipelines using popular neuro-imaging
algorithms such as MNI MINC, AIR, Brainsuite and others. LONI Pipelines' authoring
environment supports the creation of task-based workflows via a user-friendly drag and drop
interface. It does not support staging of workflow actors, rather they must be pre-installed on the
servers where execution takes place. Enactment of LONI pipelines is carried out on local
servers where the executable processes are deployed. LONI Pipeline also supports enactment
over DRMAA to a compliant cluster execution service such as Sun Grid Engine [33]. LONI also
enables the users to keep track of intermediary output and the execution states of actors during
execution.

Figure 15: LONI Pipeline Interface

Because LONI Pipeline is a complete neuro-imaging toolkit a detailed description of LONI is
provided in Appendix A. Major drawbacks of LONI include:

• LONI Pipeline is a proprietary tool.

• The LONI Pipeline Server module, which is the primary module orchestrating
pipeline execution, is limited in capabilities.

o It does not support interoperability to Grid infrastructures; however DRMAA
access is provided to selected cluster execution services.

o Because basic Grid support is missing, LONI is not capable of dealing with
large-scale data processing and analysis.

6.3.2. Taverna
The Taverna Workbench provides a desktop authoring environment and enactment engine for
scientific workflows expressed in the Simple Conceptual Unified Flow language (SCUFL) (see
Figure 16). Taverna provides a desktop authoring environment where workflows are designed
and created. Because Taverna is an authoring environment for SCUFL workflows, it is restricted
to the authoring of only service-based workflows. Enactment of workflows in the Taverna
workbench is done via the built-in Freeflou enactment engine. Provenance data is also displayed
which constitutes of the intermediary results as well as invocation made to constituent web
services and the responses returned. Taverna allows the inclusion of local widgets such as Java
classes; beans shell scripts and others, which allow for minor operations to be carried out on
responses from SOAP messages before other services are invoked.

Taverna has a rich interface. It supports extensions via plug-ins, which for example give it remote
execution capability. It exports an API, which allows the invocation of workflows from scripts
without any interface interaction. This makes it possible to create front ends, like AJAX based
frontends, which enable the invocation of workflows from simple web browsers.

 6.3.3 Kepler
Kepler [15] is a software application for the analysis and modelling of scientific data. Kepler is a
generic scientific workflow environment. Kepler is built around on a ‘director’ concept. Each
director customizes the way Kepler executes a workflow, for instance if workflows are created
with the Synchronous Dataflow Director (SDF), the execution of the workflow will be done
locally in a sequential fashion, however if the same workflow is created via the Process Network
Director, Kepler will try to execute the workflow in a more parallel fashion. This director concept
allows Kepler to be a generic tool that can be customized to any environment. It is possible to
create service-based workflows (as depicted in Figure 17) as well as task-based workflows. For
Grids, a director for Pegasus [20] has been developed. This director executes a Kepler created
workflow on a grid infrastructure after having it grid-enabled via Pegasus (see section 6.4.2).
Kepler is extensible; users can develop and add new directors to customize the behaviour of the
environment.

In terms of authoring capabilities, Kepler supports drag and drop workflow construction and
annotations. The interface is shown in Figure 17.

Figure 16: Taverna Interface

Figure 17: Kepler

6.3.4 Triana
Triana [27] is a graphical workflow environment, which allows the authoring of both task based
and service based workflows. Triana was developed for the GEO600 gravitational wave
experiment. Triana is primarily used to analyse terabytes of data generated in the GEO600
experiment. Triana is designed to make is it possible for scientists in the project to examine this
data in a simple and versatile way. It includes various out-of –the-box toolboxes which include
tasks for signal-analysis toolkit, an image-manipulation toolkit, a desktop publishing toolkit, and
others.

Triana supports both service-based workflows and task-based workflows. For enacting service-
based workflow Triana uses a Grid Application Prototype interface. For task based workflow
enactment the Gridlab GAT API [14] is used. Both these interfaces have multiple bindings, which
allow different service/grid middleware to be employed without amending the Triana application
code. For service-oriented components, web services and P2PS services can currently be invoked,
while for grid-oriented components, job submission can currently be done using GRMS, GRAM
or the local Fork adaptor. Both the GAP Interface and the Gridlab GAT allow new bindings to be
plugged in when they become available.

6.3.5. Poor Man’s Pipeline
The Poor Man’s Pipeline (PMP) is a simple PERL module based pipelining environment. It is the
primary pipeline tool used for NE pipelines. PMP offers a programmatic way to construct a
pipeline. It provides an API through which users describe stages of the pipeline. Descriptions
include input, output data sets as well as dependencies of pipeline actors. Parallel execution based
on data parallelism is supported in PMP. PMP supports the execution of pipelines over the Sun
Grid Engine and PBS.

6.3.6. Matching of User Requirements
The following table evaluate all the individual workflow environments against relevant user
requirements evaluation criteria detailed in section 6.6.2. The super-scripted numbers are
explained after the table.

\User Requirements LONI
Pipeline

Kepler Taverna Triana PMP

Easy Construction of
Workflow

Supported Supported Supported Supported Not
Supported1

Ability to easily edit
existing workflows

Supported Supported Supported Supported Not
Supported2

Annotation
capabilities

Supported Supported Supported Supported Not
Supported3

Simple mechanism
for adding new
modules

Supported Supported Supported Supported Supported

Ability to query and
select algorithms

Supported Supported Supported Supported Not
Supported4

Optimize and Grid-
Enable Algorithms

Not
Supported5

Not
Supported6

Not
Supported7

Not
Supported8

Not
Supported9

Ability to view results
and associated
Monitoring Data

Supported Supported Supported Supported Supported

Control Execution of
a Workflow

Supported Supported Supported Supported Not
Supported10

Table 2: Evaluation of state-of-the-art Workflow Projects

1. As stated in section 6.3.5, PMP is a script based workflow environment. Constructing
workflows in PMP involves writing a PERL script, defining the operations of the workflow.

Hence PMP does not support the GUI based workflow specification mechanism neuGrid users
require.

2. As stated in section 6.3.5, PMP is a script based workflow environment; hence modifying
workflow entails the modification of the PERL script that defines the workflow.

3. PMP does support annotations in the code of the PERL script, but not visually as required by
neuGrid users.

4. PMP does not have a library of modules. However users can select any algorithm they want to
execute, because it is executed form the command line.

5. LONI Pipeline is a cluster-oriented tool, hence it does not have Grid planning and enactment
functionality.

6. Kepler is a generic environment, which can be used for Grid execution. Kepler comes with
built in support for Globus, but has been extended to other environments as well. Kepler can be
integrated with Pegasus workflow planning toolkit, which provides data locality based
scheduling (Pegasus is evaluated in section 6.4.2).

7. Taverna is a service-oriented workflow tool. neuGrid actors are executable files; hence a task
based workflow tool is required. Service based workflow tool requires the actors of a workflow
to be services themselves, hence in order to adapt such a solution tasks must be wrapped into
services. Taverna support workflow planning for service based workflows by using Moteur
(Moteur is evaluated in section 6.4.1).

8. Triana supports both task-based workflows and service-based workflows. However, the task
based workflow enactment mechanism is based on GridLab GAT, which does not support the
gLite middleware, which that is planned to be used in neuGrid.

9. PMP does not support Grid workflow planning and enactment and is a cluster based solution.

10. With PMP users execute pipelines from the command line, hence in order to stop the
execution, users must terminate the command line session, and in order to restart users must
manually stop and start the workflow.

6.3.7. Observations on Workflow Authoring Environments
In the light of the comparison of the workflow environments against neuGrid user requirements
the following observations emerge.

6.3.7.1 LONI

LONI is a cluster level workflow execution tool. neuGrid Infrastructure is based on a Grid
system, hence LONI Pipeline will not be able to enact authored pipeline on the neuGrid
infrastructure (WP7). Hence LONI pipeline cannot be considered a part of the Pipeline Service
environment as it is incompatible with the work in WP7. LONI Pipeline as documented in
Appendix A, consists of two components: The user interface and the server module. The LONI
Pipeline user interface fulfils most of the neuGrid user requirements, but the server module does
not. Hence if the LONI Pipeline user interface can be decoupled from the server module, then
LONI Pipeline interface can be used as part of the neuGrid Pipeline Service.

6.3.7.2 Taverna

Taverna is a service based workflow environment. The primary actors in neuGrid pipelines are
task executables; hence some mechanism would be required to translate tasks into services in
order to author pipelines in Taverna. neuGrid pipelines mandate a task based workflow
environment, as per Task 5.3 of WP5. WP5 T5.3 aims at gridifying both the LORIS database as
well as ensuring that the image analysis pipeline software works transparently over a Grid
environment. Adoption of Taverna would create an incompatible solution with WP5.

6.3.7.3 Triana

Triana supports enactment of task based workflows, however there are some issues. Triana uses
Gridlab GAT to enact pipelines; however a gLite adaptor for GridLab GAT does not exist.
neuGrid infrastructure is based on gLite hence tools with support for gLite should be considered.
The dependency of Triana on GridLab GAT is incompatible with one of the primary objectives of
WP6, which is providing a Grid middleware agnostic and an independent solution.

6.3.7.4 PMP

PMP is a scripting based workflow environment. It does not fulfil numerous user requirements. It
does not support Grid level enactment, it does not support visual construction of pipelines, and no
validation is supported. All these requirements make it unsuitable for deployment in neuGrid.

6.3.7.5 Kepler

Kepler supports all user interface specific neuGrid user requirements. The backend of Kepler is
designed to be generic. Kepler has been integrated with Pegasus workflow planner and supports
enactment on Grid resources. Hence Kepler can provide an end-to-end task based workflow
solution. Because all environments, except PMP support the required user interface requirements
of neuGrid users, the final determinant factor is the support for Grid workflow planning and
enactment. Hence the following sections explore this aspect and details related project in these
domains.

6.4 Pipeline Gridification
The neuGrid infrastructure is Grid based. WP10 requires gridification of the neuGrid pipelines,
hence planning for Grid workflow execution is an important aspect of the Pipeline Service. There
are several technologies and approaches which can be considered, the following is a brief
description of some of the technologies which are under consideration to grid-enable pipelines.

There is no standard definition of the term “grid-enabling”, but usually grid enabling of grid
workflows is interpreted as the mapping of parallel parts of a pipeline onto grid resources, for
optimal parallel execution, reduction of the pipeline size and execution latency by leveraging
replicas of data produced and consumed and finally clustering and partitioning the pipeline for
increased efficient usage of grid resources and speedy execution of the pipeline.

There are few direct user requirements for pipeline gridification, however there are strong
requirements for pipeline gridificaiton in WP10, which deals with algorithms and pipeline
gridification. There are some dependant technical requirements, which govern the functionality of
the pipeline gridification mechanism, and are highlighted in section 6.4.3.

6.4.1. MOTEUR
Moteur [25] is an enactment engine for service-based SCUFL workflows. It provides the
capability to parallelize web service workflows for Grids. It primarily supports gridification of
service-based workflows by focusing on more parallel processing of SCUFL workflows.

6.4.1.1. Parallelization in Moteur

MOTEUR supports asynchronous calls to web services allowing it to proceed with the execution
of a pipeline without waiting synchronously for web service invocations. MOTEUR implements
the workflow parallelism approach on top of the latter. Workflow parallelism depends on the
graph topology. For instance if we consider the simple example presented in Figure 18,
processors P2 and P3 may be executed in parallel.

Figure 18: Simple Workflow

Another type of parallelism supported in Moteur is data parallelism. In a data-intensive
application workflow, several actors may work on the same data sets. Moteur exploits this by
executing all concerned components concurrently. The final type of parallelism support in Moteur
is service parallelism. In this type of parallelism, if input data sets are completely independent for
certain actors in a workflow, all the concerned actors are executed concurrently.

Moteur, since it is designed for web service based workflows, does not support scheduling of jobs
against resources. It is implicitly assumed that workflow actors are wrapped by web services,
which are pre-installed and deployed on specific resources. Moteurs' grid enabling mechanisms
hence supports parallelism based on the workflow definition only, and in order to optimally use
this, the users must deploy all actors manually. This increases the complexity of using the system
for end users.

6.4.2 Pegasus
Pegasus [20] is a workflow planner for DAG based workflows. Unlike Moteur, which optimizes
SCUFL workflows and adapts its parallelization mechanism towards web-services based
workflows, Pegasus implements scheduling as well as graph topology parallelization for task
based workflows. Pegasus introduces the concept of workflow compiling. Pegasus allows users to
define workflows in a technology agnostic manner, called an abstract workflow. Pegasus
compiles this abstract workflow into a concrete execution plan for a grid infrastructure by
perusing the site catalogue of the Grid (which defines the sites in a Grid), the replica catalogue
(which defines the physical location of datasets used in the workflow), and the transformation
catalogue (which allows Pegasus to make decisions if some actors need to be moved to some sites
prior to execution or the execution of a specific part of a workflow needs to be carried out in a
specific site).

 The workflow compiling process in other terms, includes finding the appropriate software and
computational resources where the execution can take place, as well as finding copies of the data
indicated in the workflow instance. The compiling process can also involve workflow
restructuring geared towards optimizing the overall workflow performance as well as workflow
transformation geared towards efficient data management. The result of the compiling process is
an efficient executable workflow. The advantage of this approach for neuGrid is that the pipeline
components are executable tasks, optimizing their scheduling against grid resources and
enhancing parallelism in the pipeline will greatly reduce the processing time of the complete
pipeline.

 6.4.2.1. Grid Enabling in Pegasus

There are three primary techniques deployed in Pegasus to grid-enable a workflow. Pegasus
supports pipeline reduction through data-reuse. If for some sequence of operations in a workflow,
some data set is generated which already exists in the Grid environment, the entire sequence of
operations is eliminated in the workflow. This feature is very useful in re-executing the workflow
in response to some error or modifications. Parts of the intermediary output data are discovered
through replica location services and whole sequences of operations, which produce the existing
data, are eliminated. This decreases the number of jobs executed in a workflow. Other types of
grid enabling in Pegasus include topological clustering of jobs workflow and logical partitioning
of the workflow for increased concurrent execution across sites.

 6.4.3. Matching Technical Requirements

There are 3 essential technical dependant requirements:

• Tool must support execution over Grid

There are numerous pipeline enactment solutions that are not designed for Grid applications
hence any planner that is selected must support planning for Grid applications. This is a
dependant requirement from WP7, which establishes a Grid infrastructure for the processing of
the pipelines.

• Tool must support task based workflows

This is a dependant requirement from WP5. As NE executables consist of executable
tasks; hence pipeline authored by the users will consist of tasks based workflows.
Hence it is important for the workflow planner to be capable of planning for task-
based workflows.

• Tool must be sufficiently adaptable in order to port it to other Grid infrastructures

This is a dependant requirement from WP6, which mandates grid agnostic tools.
Grid agnostic solutions are preferable as the generic medical services will not be
dependent and bound to specific Grid Middleware.

Technical Requirements Moteur Pegasus

Tool is Grid enabled Yes Yes

Tool support Task based
workflows

No Yes

Tool is Middleware
agnostic

Yes1 No2

Table 3: Evaluation of Grid-Enabling Frameworks

1. Moteur is middleware agnostic as it enacts service oriented workflows. Services can be
created in any environment, the middleware itself is irrelevant

2. Pegasus supports Globus and condor only. However the enactment information is stored in
an open XML based format hence the information can be reused by client for workflow
enactment on other middleware.

6.4.4 Suitability of Grid Enabling Frameworks

In the light of the comparison of the grid-enabling frameworks against the technical requirements
for Grid enabling a pipeline, the following observations can be made.

Moteur is primarily service oriented SCUFL based workflow planner and enactment engine. As it
is based on Taverna authored workflows, it is not suitable for neuGrid pipelines, without
extensive SCUFL to task based workflow translation.

Pegasus is a task based workflow planner. However it is not middleware agnostic. It is primarily
built for Globus and Condor. Hence in order to use Pegasus as part of the neuGrid Pipeline
Service, it has to support gLite Grid middleware.

6.5 Enactment
Enactment is the final component of the Pipeline Service. Enactment deals with the actual
execution of the user-defined workflows on Grid resources. Relevant projects are highlighted in
this section.

6.5.1. Moteur
Moteur is an external enactment engine for SCUFL based workflows. It does not integrate into
the Taverna environment rather, workflows have to be saved in Taverna and Moteur has to be
invoked manually. Moteur parallelizes the workflow as discussed in section 6.4.1, and then enacts
it accordingly. SCUFL based workflows are web-services based hence enactments constitute of
exchanging SOAP messages with actor services in order to process the workflow. As previously
stated, actor services are pre-installed and deployed on separate sites before a workflow can be
created. This greatly increases the complexity of the system for neuGrid, for the following
reasons:

1. neuGrid actors are executable processes, in order to use these processes in Moteur based
environment, they first need to be wrapped in a web service.

2. These web services must be manually deployed on multiple sites for optimal distribution.

3. When new actor services are to be made available to users in order to support new
applications, the first two steps must be repeated for each new executable process.

Due to manual and static deployment of actors, the infrastructure looses scheduling capability,
which could have greatly enhance performance of workflows as well as more efficient use of the
computing resources.

6.5.2 DAGMan
DAGman [18] is a workflow enactment engine for Condor. DAGman unlike Moteur does not do
any parallelization or grid-enabling. However it is often used in conjunction with Pegasus, which
does the required grid-enabling of the pipeline. DAGman works on pipelines, which are based on
tasks rather than web-service actors, as is the case in Moteur. A directed acyclic graph (DAG) is
used to represent the pipeline, which is a set of programs where the input, output, or execution of
one or more programs is dependent on one or more other programs. The programs are nodes
(vertices) in the graph, and the edges (arcs) identify the dependencies. DAGman is a workflow
enactment engine specific to Condor and is included in the standard condor distribution.

6.5.3 GRIA
GRIA [34] is designed to facilitate the deployment of Grid application for businesses. GRIA has
a Taverna plug-in making it an enactment engine for Taverna workflows. GRIA exposes two
basic services: the Job Service and the Data Service. The Data service is designed to
upload/download data from client machines, and the Job service publishes certain jobs, which are
to be used by the users in pipelines. Using the published jobs it is possible to create workflows
consisting of GRIA actors. Via the GRIA submission tool the workflows can be submitted and
executed on Grid resources. For execution Torque/PBS and Condor are supported, however
pipelines are not grid enabled, hence execution does not support Grid enabling of the workflows.

Primary limitations of GRIA are as follows:

1. GRIA does not include scheduling services. Rather a user has to develop a python script,
which makes the scheduling decisions amongst sites. Eventually a single site is selected for
workflow execution. Hence scheduling GRIA does not support fine-grained scheduling where
certain components could execute in one site, and other components in others.

2. Additionally, GRIA is based on a non-GSI compliant PKI infrastructure. This means that all
sites in Grid must run services developed for and deployed on the GRIA container.

3. Staging of processes is manual in GRIA. Since GRIA does not support fine-grained
scheduling, the user has to manually stage executable actors to the site where the execution will
take place.

6.6 Architectures
 In the light of the technologies detailed in section 6.3, 6.4 and 6.5, we present tentative Pipeline
Service architectures. The following architectures are designed to implement both the roles of the
Pipeline Service, defined in section 6.1 and satisfy all essential user requirements, outlined in
section 6.2.

After evaluation and review of existing related technologies the following four possible
architectures are proposed. The advantages and disadvantages of each architecture are outlined.

6.6.1 GRIA Based Architecture

This Pipeline Service integrates Taverna, GRIA as well as Pegasus, as depicted in Figure 19.
Taverna is used as the authoring environment as well as the environment where the user views
and retrieves results. GRIA is used to enable the enactment and gridification of the Pipeline. The
gridification is carried out by Pegasus. The Glueing Service (represented as the Execution
Interface(SAGA)) is used to submit the actors for final execution.

Vanilla Taverna distribution supports only services based workflows, hence Taverna toolkit has
the GRIA plug-in installed which allows the users to develop workflows using GRIA jobs which
are exported via the Job Service. The GRIA Jobs can be individual task based actors. The
architecture works as follows:

Figure 19: GRIA based Architecture

Taverna enables the creation of workflows using the GRIA actors and allows the initiation of the
workflow execution (1). The execution of GRIA service from Taverna is managed via FreeFluo
[22]. FreeFluo does web-service invocations against the Job Service of GRIA. These invocations
on the Job Service are translated into a DAG via an extension to the GRIA Job Service (2). The
DAG that represents the abstract pipeline, is passed to Pegasus (3). Pegasus returns a concrete
execution plan, which is ready for execution on Grid resources. This plan is re-translated into
GRIA format (4) which then can be enacted by GRIA on Grid resources via another extension
which allows the submission of the concrete plan to a SAGA based execution interface (5). GRIA
natively only support Torque/PBS and Condor. The final results of the execution can be
downloaded via the GRIA Data service at the users Taverna instance (6,7).

The advantages of this architecture are that the development effort can concentrate on extending
GRIA, by developing mechanisms for translation of GRIA workflows to DAG and vice versa.
Additionally a mechanism needs to be devised to enable the execution of GRIA workflows
against the Execution interface to be devised for this project. Moreover, GRIA also comes with a
mature security infrastructure that can be implemented in the project.

The disadvantages include the introduction of overheads for translating GRIA workflows to DAG
and vice versa. Additionally because GRIA is a container environment, and only two services are
used the whole package may introduce overheads in the platform. GRIA, as mentioned in section
6.4.3, does not support fine-grained scheduling making it unsuitable for HPC Grid environments.
GRIAs' security PKI infrastructure is incompatible with GSI, hence limiting the interoperability
with other Grid middleware. GRIA has manual file staging to sites where the workflow execution
will take place. GRIAs' Taverna plug-in is also developed for an old version of Taverna, which
does not have drag and drop workflow creation making it less user friendly in creating
workflows. The Pros and Cons of the approach are highlighted in Table 4.

Pros Cons

Easy to use drag-&-drop
environment

No Grid support

GRIA support for Condor, PBS No native Pipeline
Optimization, hence
translation mechanism for
Pegasus needs to be
developed

Taverna integration with
myExperiment

Overheads in translation

Mature PKI based security
infrastructure

Data service provides stub
for a provenance service,
but it needs to be developed
and customized. Hence
support for a basic
provenance is provided in
the standard distribution

Table 4: Pros and Cons of the GRIA Based Architecture

6.6.2 Pegasus based Solution

Figure 20: Pegasus based Architecture

Since Taverna enables the creation of web service oriented workflows, and NE tools constitute of

executable tasks another architecture can be proposed which focuses on providing a user-friendly
environment, which allows the users to author and invoke workflows, this architecture is depicted
in Figure 20. Kepler is a generic scientific workflow environment built without any leaning to the
task based or service based workflow approach is suitable as the pipeline authoring interface.
Current LORIS pipelines require a task-based approach to pipelines, however this should not
limit the potential execution of service oriented workflows in the system. Hence selecting a
generic environment is a suitable choice. The invoked workflows are natively stored in DAG
format that can be directly passed to Pegasus without any need for translation (1). Pegasus grid-
enables the abstract user defined pipeline and its output is used (2) to pass to the SAGA based
execution interface that allows the eventual execution of the pipeline over a grid. Through the
Provenance Service users would be able to look at the results and intermediary steps as well as
outputs of the executed pipeline. The client interface will be rich enough to allow the re-execution
of certain parts of the pipeline.

The advantages of this architecture are that the development effort can concentrate on providing a
rich user interface rather than reinventing/extending existing middleware mechanisms. The
interface can be designed form ground up to work with existing tools like Pegasus and have better
integration with services which will be provided and developed in the project such as the
Provenance Service, Knowledge service etc. The Pros and Cons of the architecture are
highlighted in Table 5.

Pros Cons

Easy to use Drag and Drop
environment

Lack of Grid enactor, Pipeline
Service enactor has to be coded

Straight forward integration with
pipeline optimization

Pegasus is not a Grid
middleware agnostic tool,
however because of the Glueing
Service this is abstracted.

Native use of task based
workflow descriptions

Pegasus integrates PASOA
provenance service for historical
workflow information

Table 5: Pros and cons of the Pegasus based Solution

6.6.3 Taverna – Moteur - A-C Architecture
This architecture, as depicted in Figure 21, consists of using a complete end-to-end web-service
based solution. Taverna is used as the environment for authoring workflows. The workflows are
created against web service descriptions of the LORIS executables, which are exported by the A-
C Web Service (1). In this architecture the user does not enact the pipeline from Taverna rather
Moteur is used for grid enabling the web services based workflow before execution which is also
done by Moteur (2). Because the A-C Web service exports the actor descriptions, enactments will
be made against this web service, and this web service will translate invocations from Moteur into
a DAG formatted concrete executable pipeline (3). This pipeline then can be submitted to the
SAGA based execution interface. Because Moteur is an external enactment engine, users can not
view results from the Taverna interface, this shortcoming would be complemented via another
interface for viewing of the provenance data (4).

The advantages of this architecture include the reuse of Taverna and Moteur, which are already
well integrated for pipeline authoring and grid enabling. However in order to author a pipeline
web service descriptions need to be provided for the LORIS executables which can be an
extensive effort. Additionally, the web service wrappers need to be manually deployed and
distributed. This severely limits scheduling capability and leads to inefficient use of computing
resources. Additionally provenance tracking is more difficult in this architecture. Because the
process execution provenance is provided by Moteur while the outcome of the processes is
provided by SAGA, both these information needs to be merged and provided to the users. The
means to provide provenance information to users will call for another interface because Moteur
being an external enactment engine does not show provenance information in the Taverna
interface like FreeFluo does. The pros and cons are highlighted in Table 6.

Figure 21: Taverna-MOTEUR based Architecture

Pros Cons

Mature drag and drop environment Overheads in
translation

Good integration with pipeline
optimization (Moteur)

External enactor
looses visual
enactment from
Taverna

No staging of actors
or data sets

Table 6: Pros and cons of the Taverna-Moteur-A-C Architecture

6.6.4 Triana based architecture

Figure 22: Triana based Architecture

In this architecture, as depicted in Figure 22, the user authors pipelines in Triana. Once the user
invokes the enactment of a pipeline, the pipeline is first grid-enabled and optimized via Pegasus.
Then the enactment is carried out via the Gridlab GAT adaptor for the Glueing service. The
Glueing service eventually executes the tasks on the Grid.

Pros Cons

Mature drag and drop
environment

Overheads in translation

Support for task based
workflows

Glueing service Grid lab
GAT adaptor needs to be
developed

Overheads due to two
levels of Grid API’s Grid
lab GAT which is
integrated in Triana, and
SAGA which’s frontend
is provided by the glueing
service

Table 7: Pros and cons of the Triana based architecture

This proposed architecture uses Triana as the pipeline authoring environment. Since task based

workflows can be invoked via only Gridlab GAT, hence a Gridlab GAT adaptor for the Glueing
service needs to be developed. Apart from this translation mechanism needs to be developed
where the pipeline is translated from the Triana format to Pegasus format and then translated
back. These translation mechanisms and integration with Pegasus needs to be developed. The
pros and cons of the architecture are highlighted in Table 7.

6.7 Recommendations
 In the light of the user requirements and the pros and cons of the architectures, the second
proposed architecture that makes use of Pegasus, a mature workflow planner and Kepler as a
generic workflow-authoring environment seems to fulfil all major neuGrid requirements. The
principle factors in selecting the second architectures include:

1. Use of a generic and mature scientific workflow authoring environment

2. Use of a mature task based grid enabling toolkit

3. Extent of integration between both outlined technologies (Kepler and Pegasus)

4. Integration of Pegasus with PASOA [28] (Provenance Tracking)

5. There is a clear separation of concerns in this architecture; each component can be
changed without affecting any other component as the project evolves. Kepler is the
current authoring environment however this environment can be replaced with any other
suitable workflow authoring environment.

On the other hand principle factors which discourage adaption of Architecture 1 and 3 include:

1. Lack of scheduling capability in both GRIA and Moteur
2. Focus on static actor workflows in Moteur (actors are pre-installed in sites)
3. Lack of interoperability of GRIA with other middleware, due to incompatible

security infrastructures
4. Complex provenance gathering in Architecture 3
5. Manual file staging in Architecture 1, and none in Architecture 3

Hence Architecture 2 seems to provide a suitable service for neuGrid. The various components
under consideration are: Kepler as the workflow authoring environment, PASOA as the
mechanism for provenance gathering and Pegasus to grid-enable the workflow. The limitations of
the mentioned software are outlined below which need to be addressed during the course of the
project.

6.7.1 Kepler
Kepler provides a generic environment to create pipelines/workflows. The work on integrating
Kepler and Pegasus was done. In the paper it is mentioned that the director was a work in
progress and the director is not shipped with the default distribution of Pegasus. It is unclear as to
what is missing in the director right now, as the director becomes available limitations can be
studied and solutions explored. Additionally Kepler will be ported to a suitable format, for
integration into a portal for neuGrid. Kepler will be the primary workflow authoring environment
while, the Portal will integrate information from the several neuGrid services such as provenance
service, knowledge service, metadata service and workflow status information, as well as
visualization for results.

However this architecture is not bound to Kepler alone. An advantage of this architecture is that
there is a separation of concerns. The Grid planning and enactment is handled by separate
independent components. Moreover, the planning and enactment component takes workflow in a
specific format; hence the user interface can be flexible because in any case transformations have
to be made, as shown in Figure 23.

Figure 23: Flexible Pipeline Service Architecture

6.7.2 Pegasus

Pegasus provides a mature framework to grid-enable abstract user defined pipelines to
Grids. However Pegasus has support for Condor DAGMan only, and can talk to Globus
via the Condor-G extension. The NeuGrid Pipeline Service should be middleware
agnostic, hence requires that Pegasus should be extended to support other middleware as
well. Because in the neuGrid architecture middleware will be shielded via the gluing
service, Pegasus needs to be ported to work with the glueing service.

6.8. Pipeline Service Design
 There are three primary components in the architecture outlined in section 6.6.2: The authoring
environment, Pegasus and the grid submission/enactment mechanism.

As stated in section 6.7.1, the authoring environment is flexible. The documented design,
presented in this section, features two authoring environments, Kepler and LONI. Due to the
closed source nature of LONI Pipeline and the open source nature of Kepler, the Pipeline Service
is completely integrated with Kepler. The Pipeline Service is used as an external service for
LONI Pipeline.

The components of the Pipeline Service are outlined in Figure 24. The interaction starts with the
authoring of a pipeline, which the user wants to execute on the Grid (1). Authoring can be done in
numerous tools, the prototype implementation presented in this section, uses Kepler and LONI
Pipeline as the authoring environment. As previously pointed out in Figure 23, the architecture is
flexible and any suitable authoring environment can be accommodated.

After authoring the pipeline, the user invokes submission of the pipeline (2). In this case, several
things happen: (3) first the authored pipeline, which is represented in a Modelling Markup
Language (MoML) format (in case of Kepler) or in LONI Pipeline XML (in case of LONI) is
transformed into a simple XML based workflow format, which is passed to the Pipeline Service.
The Pipeline Service translates the specification into a workflow object, via an API, which will be
provided as part of the Pipeline Service (detailed in section 6.8.2.2). The workflow object is
translated into a DAX file, via the Pegasus DAX API. Pegasus is used as a workflow-planning
tool in this environment. This DAX file represents the abstract workflow the user defined.
Pegasus using the Grid site catalogueue, the transformation catalogueue and the grid replica
catalogueue, plans the workflow into a concrete executable workflow. The following operations
are carried out by Pegasus on the workflow.

1. Tasks are mapped to individual grid sites, depending on availability of task
actors and/or study set replicas or partial workflow outputs.
2. Portions of the workflow are mapped to specific grid resources, depending on
the computing platforms and computing resources provided by the sites.
3. Enhances workflow specification by including data staging actors to stage data
between sites.
4. Enhances workflow specification by including provenance actors for provenance
collection.

The Pipeline Service uses this information and updates the workflow specification and enacts the
workflow via the Pipeline Service Enactor. Figure 25 sums up the transformations that happen to
a workflow until its executed. This diagram will be references in the following section where a
complete explanation of the architecture is detailed.

Figure 24: Pipeline Service

Figure 25: Transformations in Pipeline Authoring to Enactment (using Kepler)

6.8.1 End to End architecture description
The architecture is explained via a sample workflow that is authored by the user. The focus of this
section is to illustrate how a workflow would be executed from an abstract description provided
by the user to the final output of execution results. Two authoring environments are used in this
example, LONI and Kepler.

6.8.1.1 Workflow Authoring Environment

Users author workflows in Kepler and LONI, in a graphical drag and drop environment. A
screenshot of the Kepler environment is shown in Figure 26. Kepler will provide numerous actors
and algorithms, which the users want to use in their workflows. Algorithms must be described in
XML format to Kepler in order for them to be accessible in the interface.

Figure 26: Kepler Interface

A sample description of the mincdefrag algorithm is shown in the following listing.

Salient features of the algorithm specification include, the entity name, which will define an
abstract entity in the environment. The input “port” types, which are input parameters to the
algorithms and the output port, which is the output parameter of the algorithm. If port types
mismatch, Kepler does not allow the connection of the actors. XML based descriptions will be
included for all algorithms so that users can create workflows with ease. Additionally, the
interface will be enhanced to allow for dynamic data set selection. This will be detailed in the
Querying service specification.

 Listing 1

There are three primary areas in the Kepler interface. All three areas are highlighted in the Figure
27. The area marked by a red rectangle is the authoring workspace. In this area user will drag and
drop algorithms, define parameters and inputs and finally define the order of execution. The green
marked area is the actor/algorithm search toolbox. From this area user can search and select
algorithm which he wants to use in the workflow. The orange marked area, represents workflow
control options. The green “play” button starts the execution of the workflow. This involves
translating the Kepler workflow into a series of transformations before it can be executed.

Figure 27: Marked Kepler Interface

Kepler uses the MoML specification to represent workflows. When the workflow is enacted it is
first saved in a MOML format. Part of the MoML format of this workflow is shown in listing 2.

Listing 2

The full workflow is shown in Appendix B.

The same workflow can be created in LONI Pipeline interface, and the same workflow is shown
in Figure 28.

 Figure 28: LONI Pipeline authored workflow

This LONI Pipeline authored workflow is stored in a XML file, an excerpt of the file is shown in
Appendix C. The LONI Pipeline Interface is detail in Appendix A.

6.8.1.2 Submission to the Pipeline Service Client

The Pipeline Service client is a component integrated with the authoring environment. Because of
the open source nature of Kepler, the Pipeline Service is integrated into Kepler which enables it
to support seamless execution of a workflow over the Pipeline Service. Once a workflow is
submitted from Kepler, the Pipeline Service client, transforms the Kepler MoML workflow into a
simplified XML workflow and submits it to the Pipeline Service. The XML format the Pipeline

Service uses is the pure MoML specification, which does not contain Kepler specific annotations.
The non-annotated MoML specification was selected due to its simplicity. The specification
includes a basic xml construct for actors, input values, output values and relations and link
amongst the actors. The complete simplified workflow is shown in Listing 3.

The Pipeline Service client after translating the Kepler annotated MoML workflow into simple
non-annotated MoML invokes the Pipeline Service and submits the workflow for enactment.

For LONI Pipeline, because of its closed source nature, an external Pipeline Service client is used
to transform the LONI Pipeline XML specification into the required simplified XML format used
by the Pipeline Service.

 Listing 3

6.8.2 Pipeline Service
The main role of the Pipeline Service is to provide seamless enactment of user defined workflows
over a Grid. The Pipeline Service provides its functionality via a web service based interface. The
interface of the Pipeline Service is described in section 6.8.2.1. Once a client submits a workflow
in the simplified MoML format, the Pipeline Service converts the XML-based specification into a
workflow object. The object-oriented workflow API is described in section 6.8.2.2. In 6.8.2.3 we
detail the interaction of the Pipeline Service with Pegasus and how the planned workflow is
eventually enacted. The enactment approach is detailed in 8.2.4.

6.8.2.1 Pipeline Service Web Service Interface

The following documents the methods provided by the Pipeline Service.

Non-interactive execution

String run(Workflow userWorkflow, int sessionID);
String terminate(String workflowID, int sessionID);

Int registerSession();

Interactive Execution

String enact(Task usertask, int sessionID);

registerSession Method

This method is provided to maintain state at the Pipeline Service side. The method returns a
unique integer number, which identifies the session for a particular client.

run method

The run method does several things: It first invokes Pegasus to grid-enable the workflow defined
by the users. The grid-enabled pipeline is then enacted via the Glueing service. Due to the lack of
appropriate meta-scheduling adaptors the enactments have to be made by the Pipeline Service.
The run method returns a unique string, which identifies the specific workflow. In the context of
a session, multiple workflows can be executed.

terminate method

The terminate method, as the name suggests terminates the execution of a workflows in a specific
session.

enact Method

This method is provided for interactive execution of workflows. The previous functions do not
provide for interactive executions, because user cannot gain feedback from the execution until the
entire workflow has been enacted by the Pipeline Service. However when the user wants to test a
new pipeline, and wants to study the behaviour it may be useful for the user to enact it form the
authoring environment and study behaviour actor by actor.

6.8.2.2 Workflow API

 Listing 4

WorkflowAPI Class

The workflowAPI class will be used to describe workflows specified by the user in the
workflow authoring environment. An explanation of the proposed methods is provided. To
demonstrate the use of the workflow API and the Task class a sample workflow is considered.
Graph structure of the workflow is shown in Figure 29.

The workflow starts with an actor, named actor1, which processes the input to the
workflow workflow.in, the output of the workflow is fed into two further actors. Both actors
process the output of actor1 simultaneously. The output of the workflow consists of two files
actor2.out and actor3.out.

Figure 29: Workflow example

addTask

With the addTask method the user would be able to add tasks to a workflow.

Listing 5

In this the shown code listing numerous thing happens, the line 1-4, define the actors and the
workflows. In Line 5-10 actor1 is initialized with the executable, input, outputs, and any
arguments that need to be passed to the executable are set. The location of the logs are defined as
well. In line10 the task is finally added to the Workflow object named workflow.

AddPredecessor

There are two means of specifying a dependency; one is through the constructor or explicitly
through this function. In the workflow shown in figure 29, both actor2 and actor3 are dependent
on the output data from actor1. Listing 6 demonstrates how the scenario can be expressed.

Listing 6 shows the usage of both the constructor method of adding a predecessor task and using
the AddPredecessor method. Line 1 to 11 shows the initialization of actor2 and actor3. Line 12
shows how a predecessor is specified via the addTask method. Line 13-14 show how
AddPredecessor method is used.

 Listing 6

Overloaded AddPredecessor method

The AddPredecessor function used in the code listing, takes the task ID of the task and a single
predecessor. This is suitable for our workflow, however for workflows where there are more than
1 predecessors like shown in Figure 30.

Figure 30: Advanced Predecessor Example

In order to cater for these scenarios an overloaded method has been provided where an array of
predecessor tasks can be specified.

getTask, and setTask methods

After a workflow has been defined, it is possible to amend some tasks, like specifying a new
input file to a certain task. In this scenario, the user has to maintain a taskID. A sample use of the
workflow class in the scenario is documented in listing.

Listing 7

The Workflow class will maintain an internal directed acyclic graph data structure, where vertices
would tasks. The setTask function will replace the t1 class with the appropriate equivalent class
the DAG data structure.

removeTask method

The removeTask method removes a task from the workflow. However this may lead to workflow
consistency issues because the predecessor tasks and the successor tasks will not be linked. In this
case the developer has to use the getTask, setTask functions to modify properties of the
predecessor and successor tasks accordingly.

removePredecessor method

The removePredecessor method allows the user to remove a predecessor of a workflow, may be
used with the removeTask function in order to cleanup legacy defined dependencies.

In the architecture shown in Figure 24 the Pipeline Service will use the workflow API to convert
the simplified MoML into a programmatic DAG. Before we proceed with the enactment in step 5
in figure 24, the Pipeline Service uses Pegasus to plan the workflow.

6.8.2.3 Pegasus

Pegasus supports numerous planning techniques for Grid workflow. In a Pegasus environment, a
user submits an application-level description of the desired workflow in an abstract format.
Pegasus uses various data from the Grid including the site catalogue, transformation catalogue
and the replica catalogue. The site catalogue contains information about the sites in a Grid. The

transformation catalogue contains abstract to physical mappings for operators in a workflow and
finally the replica catalogue is used locate the copies of the operators and data used in the
workflow.

The following steps are used by Pegasus to create a concrete workflow for execution

1. Firstly, Pegasus consults the site catalogue (SC) to find which Grid nodes are
available in the Grid. Site catalogue can be either a Grid information service or a text
file containing descriptions of the sites available in the Grid.

2. Workflows are executed multiple times on a Grid. It is possible that a subset of the
data that will be generated in the current workflow has been generated in a previous
execution. Hence Pegasus queries the RLS service (replica catalogue) to find instances
of data products, which will be generated in the workflow. If such instances are found,
the tasks, which lead up to the generation of the data, are eliminated.

3. The previous step assumes that it is more efficient to access the data then to re-
compute it. Given the workflow, a site selection is performed. This selection can be
done based on the available resources and their characteristics as well as the location of
the required input data. Site selection is based on a few standard algorithms which the
users can choose, the algorithms include: random, round-robin and min-min selection.
These algorithms can be applied to the selection of the execution site as well as the
selection of the data replicas. The selection algorithms make use of information
available in site catalogue, the transformation catalogue and replica catalogue.

4. Pegasus provides an option to cluster jobs together in cases where a number of
small granularity jobs are destined for the same computational resource. During
clustering we consider only independent tasks, so that they can be viewed by the remote
execution system as a single entity. These tasks also need to be destined for the same
execution system [26].

5. The abstract workflow contained only nodes representing computations. Since the
workflow can be executed across multiple platforms and since data need to be staged in
and out of the computations, Pegasus augments the workflow with tasks that explicitly
perform data transfers.

After all the previous optimization, the final submit file is generated. This file can be directly
submitted to DAGman, or through Condor-G to the Grid.
The focus of neuGrid is to support enactment of workflows in a middleware agnostic manner.
The Pegasus mapper is used in the Pipeline Service. The Pegasus mapper does all the planning
and the enactment is done via the Pipeline Service enactment engine.

The same workflow is transformed for Pegasus into a DAX. Pegasus provides a Java API for
creating DAX workflows programmatically. In order translate the Workflow object the Pipeline
Service creates into a format Pegasus can understand, the Pegasus DAX API is used to
dynamically create workflows. The following is an example of the same workflow being created
in the DAX API.

 Listing 8

 Listing 9 shows the DAX file that is generated, which is passed to Pegasus to plan the execution.
The final DAG workflow that is generated contains concrete execution information. A DAG
workflow contains multiple submit files for individual actors. Pegasus inserts staging information
as well. Listing 10 is a specific submit file for a single actor.

 Listing 9

 As we can see, in Listing 10, Pegasus has replaced abstract actor information with concrete paths
pointing to specific Grid executables, as well as concrete input files and output files. The site on
which the executable will execute is given in the “Pegasus_site”.

8.2.4 Pipeline Enactment
The planned workflow is finally enacted, and the following is an excerpt form the enactment
engine. The enactment engine uses Glueing service SAGA compliant calls to enact the
workflow.

Listing 11

6.9 Research Issues

6.9.1 Introduction
e-Science workflows are broadly characterized as complex workflows which are both data
and compute intensive. E-Science workflows are complex because they require a large
number of processes and transformations and have a large number of data dependencies
amongst them. neuGrid workflows, such as the CIVET (Cortical Thickness Pipeline) are e-
Science workflows. neuGrid workflows can be further categorized as data mining workflows,
because they carry out a sequence of transformations on raw image data to retrieve valuable
and significant information.

The enactment and execution of e-Science workflows, such as those supported in neuGrid, on
Grid resources faces many challenges. One of the challenges is inefficient resource usage and
long application turnaround times when executing these workflows. Potential research issues
and potential solutions are highlighted in this section. The focus in this section is on
addressing the scalability of neuGrid or other data mining workflows in Grids.

This section discusses potential research problems and solutions covering:

1. Scalability of the neuGrid workflows.

2. Exploring the potential for integrating machine learning based methods in the planning
of the workflows to produce more efficient workflows, reducing time and increasing
efficiency.

3. neuGrid workflows are authored by non-technical Grid users. Users author pipelines
according to application requirements. Authoring Grid workflows with just application
requirements may lead to less adaptive and inefficient Grid workflows. To build more
efficient and adaptive Grid workflows, numerous design considerations need to be taken
into account, which significantly increases the complexity of authoring Grid workflows.
Hence the transformation and adaption of the original specification into a concrete Grid
executable plan is a research issue.

Figure 31 shows the outline of a typical Grid data mining application. Figure 31 can be used
to express the cortical thickness pipeline in neuGrid, which is used to identify neurological
diseases in patients. This workflow will be the primary application, which will be used to
benchmark the approaches and mechanism developed during the project.

Figure 31: Outline of a Grid Data Mining Application

The application proceeds as follows: a patient needs to be diagnosed; the appropriate brain
scans are retrieved and processed over a series of computations called a pipeline or a
workflow to retrieve certain parameters which include parameters such as left hemispheric
native thickness, right hemispheric native thickness and the mid-surface with cortical
thickness asymmetry map. These parameters are classified against a control set of images
with certain values. In data mining terms, the images in the control set represent certain points
in a multi-dimensional space. The task of the classification algorithm, which is performed
manually by statisticians, is to find the closest point from the unknown instance to the control
set points. With near proximity to a certain control set point the nature of the instance can be
identified.

It is planned in neuGrid to enable scientists to run the same process for thousands of images,
ideally against a larger control set to allow for more accurate diagnosis. This can create
scalability problems both in terms of computational and storage capabilities. Scaling up Grid
data mining applications is a complex research issue. Many tradeoffs need to be considered
and many approaches can be explored and adapted. For example in the context of the neuro-
imaging pipeline, the instance which needs to be classified can be reduced dimensionally
through feature selection, reducing both the multi-dimensional distance calculation and
processing time, however feature selection may impact the accuracy of the results.
Alternatively highly granular workflows can be constructed which cater for more efficient
parallelization at the cost of increased queue waiting times. A further possibility is to develop
more advanced schedulers that focus on near optimal scheduling for data intensive processes
in the pipeline at the cost of compute intensive processes or vice versa. Yet another possibility
is to explore efficient replica management.

Many approaches can be adapted and explored, however only certain aspects, specifically
those which can be applied to a broader set of Grid applications will be explored in this
research (detailed in section 6.9.2). The software that will be used to carry out the
experiments is a Grid Pipeline Service, which is detailed earlier in this document. The
Pipeline Service detailed in this document uses state-of-the-art workflow planners, which use
only static information about the Grid resources, workflow actors and data locations, as
shown in Figure 32. This produces a workflow, which is not inherently scalable as only static
Grid information is used. Creating more intelligent workflow planners will be explored, as
illustrated in Figure 33. The intelligent planner would use numerous data sources besides the
static Grid information state of the art planners use. Historical workflow execution data, as
well as application or workflow specific data will be combined into aggregate search space on
which the search for an optimal workflow will be carried out.

Figure 32: Workflow Transformation in Sate of the Art Workflow Planners

Figure 33: Intelligent Workflow Planning

6.9.2 Towards Intelligent Workflow Planning

The state of the art workflow planners, as outlined in section 6.4, try to improve upon the
static concurrent execution of workflows, by trying to inculcate information about the Grid
environment, like the available sites, replicas of data, clustering of granular jobs etc. But the
information used by these tools is still static. More dynamic and intelligent workflow
planning has been envisioned [16]. In [23] the workflow generation problem has been cast
as an AI planning one in which the goals are the desired workflow outputs and the operators
are the application components. An AI planning system is initialized with a representation of
its current environment, a desired goal state, and a repository of operations it can take to
achieve the goal state.

The planning system searches for a valid, partially ordered set of operations that will
transform the current state into one that satisfies the goal. In terms of workflow planning, the
operations are the actors in the workflow, and the goal state is the final result that is
computed. The goal of effective workflow planning is the optimum configuration of actors
against constraints that are enforced by dynamic Grid resources and preconditions, which are
specified by application dependencies. Finding the optimum workflow description in this
dynamic decision space in Grids is a multi-dimensional search problem as there are a myriad
of parameters that can affect the execution of a workflow. Machine learning approaches such
as genetic algorithms or ensemble learning are effective approaches for negotiating multi-
dimensional search spaces, as they offer parallelized searching of a search space. Hence this
research will explore the applicability of these methods in scaling grid data mining
workflows.

It is envisioned that intelligent workflow planning techniques can provide high-quality
solutions, partly because they can search several solutions and return the best ones found, and
because they use heuristics that will likely guide the search to good solutions. However in
contrast existing grid data mining applications frameworks include only rudimentary
workflow planning if at all. The authors in [23] identified the following key areas, which
needed to be addressed in future Grid workflow management including more efficient
knowledge capture thereby enhancing usability in enabling more abstract definitions of
workflows and improving robustness in terms of enhancing adaptiveness of the workflows in
the dynamic Grid. Access rights in multi-organizational Grids was highlighted as well and

finally the problem of workflow scalability was identified. The authors [23] stated that
primary issues with workflow scalability are both the large amounts of data they deal with
and the scale of the workflows themselves which contribute to the problem’s complexity. In a
Grid environment often a pool of workflows is executing which also creates complex
scheduling problem when workflows are not optimized.

Of the five categories highlighted by the authors, we focus on the scalability and robustness
aspects of Grid workflows. In [21] the authors reiterate similar issues. They state that
workflow performance has two aspects: efficiency and robustness. Efficiency deals with the
ability to quickly bind a task to a grid resource and robustness deals with the ability to handle
exceptions in a workflow without failing completely. One major bottleneck in workflow
performance, they state, is the issue of data transfer, not just input data sources but also how
efficiently data is moved between the tasks in a workflow. This is severely impacted by the
workflow design [24][19]. Fine-grained workflows generate large volumes of data transfers
amongst tasks, whereas coarse-grained workflows may result in inefficient resource usage.

In [24] it is stated that advances in scalability in workflow execution are required and
advances will have to occur in multiple dimensions. The identified dimensions include:
efficiently describing large scale workflows, scaling the number of resources involved in a
workflow execution and finally efficiently handling increasing number of workflow actors.
In the light of this discussion, future work on the Pipeline Service will focus on creating more
robust and flexible approaches, inspired from machine learning, to create more flexible
workflows. As a sample study, we will explore scaling the cortical thickness
pipeline/workflow from the neuGrid project. Future focus of the work will be to scale
workflow pools as envisioned by researchers.

6.9.3 Suitable Machine learning Approaches
Numerous machine learning approaches can be explored to refine workflow specifications.
However in order to leverage machine learning effectively, metrics need to be defined, which
will determine the search space the machine learning algorithm will operate in. These metrics
will represent certain characteristics of workflows.

6.9.3.1 Metrics and Fitness Function

Often for measuring the scalability of a data intensive workflow, the data throughput of a
workflow is measured. Lower data throughput means a workflow keeps a large amount of
data locally while it is processing it. This means that the total amount a workflow segment
can process is proportional to the storage capability of the site where the workflow is
executing. This leads to unscalable workflows as the scalability of such a workflow is directly
proportional to the storage capability of the site. For scaling such workflow cleanup jobs in
workflows have been introduced to increase scalability [31] . Other data related metrics
include inter-site transfers, large inter-site transfers mean high communication latency of
processes leading to slower execution. Intra-site transfers are significant as well. Although
intra-site communication latencies are smaller than inter-site latencies however large number
of intra-site communication means processes spend a large time in suspended state waiting for
data.

Compute related metrics are important as well. As users generate workflows from an
application point of view, not all processes in the workflow are equally compute intensive; a
common solution for this problem is to cluster granular jobs together [26]. However state of
the art workflow planners use static information about Grids to plan workflows and cluster
jobs. A machine learning approach will use execution feedback to determine the best possible
clustering strategy. Job clustering is also important in increasing or decreasing granularity of
a workflow. Increased granularity means that more Grid resources will be able to be utilized
during execution however at the same time, increase granularity means more scheduling
delays. This is a typical trade-off situation, which may differentiate between scalable
workflow execution and inefficient execution. Such complex search problems are ideal for

machine learning approaches.

Thus there are two primary classes of metrics, which will be used to guide a machine learning
approach: data based and processing based. However numerous other metrics can be
considered as well, esp. application specific metrics may be included when generating a new
iteration of a workflow. The fitness function used to evaluate new workflows will be a
combination of various metrics.

6.9.3.2 Suitable Machine Learning Approaches

Workflow optimization is an incremental process, as has been stated before it is also a multi-
dimensional search problem. Machine learning approach such as evolutionary approaches,
ensemble learning and composite machine learning algorithms are of significance to this
problem. Genetic algorithms generate populations of candidate solutions, evaluate fitness and
improve the next generation by selecting high-value parents, and crossing over and mutating
them to generate a new pair of children. A workflow maybe represented as a direct acyclic
graph. Mutations and crossover operations may be carried out via graph manipulations. A
generation will be a set of workflows with characteristics but the same workflow task
sequence. Fitness will be quantified by executing a workflow.

Fitness function itself can be dynamic. Since this is a multi-dimensional search problem. It is
possible that certain parameters in the fitness function have more influence on the
performance as other parameters. Hence in order to identify such features, feature selection on
the fitness function itself can be of value. Feature construction that is creating a new feature
from existing feature may be of value as well. For instance a single metric for data efficiency
can be constructed dynamically from disparate data centric measurements. Such methods
have been widely used in numerous domains [32].

Ensemble learning methods are based on statistics and are primarily used for classification.
Ensemble methods, like Genetic algorithms, are suitable in traversing complex multi-
dimensional search spaces and use statistical measurements to produce iterations of a
candidate solution. Popular methods in Ensemble learning include bagging and boosting. In
bagging a classifier is generated from different subsets of a data set, randomly drawn, and the
efficiency of the classification process is defined by taking the accuracy of the entire
ensemble. Similar methods can be applied to workflows too. Different population of
workflows can be generated and co-evolved however using different fitness functions for
subsets of the population; this may lead to a highly parallel approach to discovering suitable
fitness functions which may be used in future to refine workflows.

As has been discussed, incremental, generational machine learning approaches such as
genetic algorithms and ensemble learning are suitable for the workflow optimization problem.
However in order to guide these approaches toward acceptable solutions correct fitness
functions are required. Fitness function will consist of numerous metrics, which directly
impact the performance of a workflow. However machine learning approach will be applied
to discovery acceptable fitness functions. Methods such as case-based reasoning, feature
selection and construction as well as genetic programming may be suitable. Numerous
machine learning algorithms and composite machine learning algorithms can be applied,
however we will explore and shortlist which of the approaches are most suitable. Those will
be deployed and tested in prototype systems.

6.9.3 Methodology
The experimental infrastructure used will consist of prototype algorithms encoded into the
Pipeline Service and a physical computing infrastructure that will be setup for the project
studied. The cluster middleware Condor [17] will be used to create multiple pools of clusters.
The Pipeline Service will apply the encoded mechanisms to the workflow being executed and
the physical infrastructure will be used to execute the workflow and appropriate measurement
for the quantitative analysis will be taken.

The methodology is illustrated in Figure 34.

Figure 34: Research Methodology

At (1), the user defines the workflow in the pipeline-authoring environment; these workflows
will be primarily neuGrid specific neuro-imaging workflows. After the user defines the
workflow, he submits it for execution. Because user defined workflows are not directly
executable in Grids hence it is first transformed at (2) by Pegasus into a concrete executable
form. Pegasus uses various Grid specific data sources, shown in (3) such as the site catalogue,
transformation catalogue and the replica catalogue to plan the workflow concretely, Pegasus
is detail in section 6.2.2.6. In a traditional Grid workflow framework the workflow would be
enacted in this form. However because the focus of this thesis is to explore scaling of grid
data mining workflows using machine learning approaches, the Pegasus workflow planner
would be replaced by an intelligent machine learning based workflow planner which would
formulate a concrete execution plan based on not only static Grid information, but also
relevant dynamic Grid information, historical workflow execution and application specific
data. The machine learning approach will try to find optimal workflow according to a user-
defined fitness function. Fitness functions will consist of number of parameters. Certain
parameters which characterize a workflow need to minimized such as queue wait times, inter-
task data transfers and some others need to be maximized such as task granularity, parallelism
etc. A discussion on possible fitness functions is presented in 2.4.1.

After the machine learning approach is applied many iterations of the workflow can be
generated and enacted on Grid resources. Execution logs and output data will be retrieved and
stored in (6). Enactment, as shown in (7) in the project will be done against a Grid of Condor
clusters. Condor is a popular cluster middleware, and numerous pools will be deployed to
create a Grid.

Execution specific data is dumped to a data store (9). The data store will be used to analyze
the efficiency of the workflow. This data will also be used for analysis of the approach, and
improvements will be made to the implemented approach in response to deficiencies in the
algorithm.

6.10 Conclusion

The Pipeline Service is an important component of the WP6 Generic Medical Services. The
role of the Pipeline Service is to enable authoring of neuro-imaging pipelines, gridify and plan
the enactment of the pipeline, enact the pipeline and finally allow users to retrieve and view
results.

The design of the service is guided by the relevant neuGrid user requirements. The design is
also compliant with the WP6 Services Design Philosophy. Related state-of-the-art projects
were reviewed and evaluated. The architecture that most suited the user and technical
requirements was selected. The selected architecture has numerous features, which make it
suitable for neuGrid. The architecture promotes a separation of interests, where the authoring
environment is completely decoupled from the gridification and enactment engine. Numerous
authoring environment can be integrated which include LONI Pipeline, Kepler or a web-
based authoring interface. At the other end, the design integrates seamlessly with other WP6
services, including the Glueing and Provenance Service.

Future research issues have also been identified in this document. These issues will be
explored during the development of the Pipeline Service. The focus of the research would be
to make the neuGrid Pipeline Service more scalable and efficient than compared to the
existing state-of-the-art related projects.

6.11 References

[13] W3C XML Protocol, http://www.w3.org/2000/xp/

[14] Allen, G., D. Angulo, T. Goodale, T. Kielmann, and A. Merzky. Gridlab: Enabling
Applications on the Grid. Lecture Notes in Computer Science, 2002

[15] Altintas, I, C Berkley, E Jaeger, and M Jones. Kepler: An Extensible System for
Design and Execution of Scientific Workflows. Scientific and Statistical Database
Management 2004

[16] Blythe, J, E Deelman, Y Gil, and C Kesselman. Transparent Grid Computing: A
Knowledge-Based Approach. 15th Annual Conference on Innovative Applications of
Artificial Intelligence (IAAI), August 12-15, Acapulco, Mexico. 2003.

[17] Condor Website. Condor Cluster Middleware, Http://Cs.Wisc.Edu/Condor.

[18] DAGman Website. Condor Dagman, Http://Www.Cs.Wisc.Edu/Condor/Dagman/.

[19] Deelman, E, and A Chervenak. Data Management Challenges of Data-Intensive
Scientific Workflows. Proceedings of the 2008 Eighth IEEE International Symposium on
Cluster Computing and the Grid (CCGRID) 687–92.

[20] Deelman, E. Pegasus: A Framework for Mapping Complex Scientific Workflows Onto
Distributed Systems. Scientific Programming 13 (3/2005): 219-37.

[21] Fox, G, and D Gannon. Workflow in Grid Systems. Concurrency and Computation:
Practice and Experience 18 (10): 1009-19.

[22] Freeflou. Freefluo Enactment Engine, Http://Freefluo.Sourceforge.Net/.

[23] Gil, Y, E Deelman, J Blythe, C Kesselman, and Tangmunarunkit H. Artificial
Intelligence and Grids: Workflow Planning and Beyond. Intelligent Systems, 2004, IEEE 19
(1): 26–33.

[24] Gil, Y, E Deelman, M Ellisman, T Fahringer, and Fox G. Examining the Challenges of
Scientific Workflows. IEEE COMPUTER 40, 2007, (12): 24–35.

[25] Glatard, T., J. Montagnat, D. Lingrand, and X. Pennec. Flexible and Efficient
Workflow Deployement of Data-Intensive Applications on Grids With Moteur. International
Journal of High Performance Computing and Applications 5 (20): 52-80, 2007.

[26] Gurmeet, Singh, Su Mei-Hui, Vahi Karan, Deelman Ewa, Berriman Bruce, Good John,
Katz Daniel, and Mehta Gaurang. Workflow Task Clustering for Best Effort Systems With
Pegasus. MG '08: Proceedings of the 15th ACM Mardi Gras conference

[27] Majithia, S., M. Shields, I. J. Taylor, and I. Wang. Triana: A Graphical Web Service
Composition and Execution Toolkit. IEEE International Conference on Web Services
(ICWS'04) 514.

[28] Miles, S., P. Groth, M. Branco, and L. Moreau. The Requirements of Using
Provenance in E-Science Experiments. J Grid Computing, 2007.

[29] N, Mandal, Deelman E, Mehta G, Su M, and Vahi K. Integrating Existing Scientific
Workflow Systems: The Kepler/Pegasus Example. Proceedings of the 2nd workshop on
Workflows in support of large-scale science, 2007.

[30] Pan, M. J., D. Rex, and A. W. Toga. The Loni Pipeline Processing Environment:
Improvements for Neuroimaging Analysis Research. 11th Annual Meeting of the
Organization for Human Brain, 2005.

[31] Ramakrishnan, A., G. Singh, H. Zhao, and E. Deelman. Scheduling Data-Intensive
Workflows Onto Storage-Constrained Distributed Resources. 7th IEEE Symposium on
Cluster Computing and Grid Computing (CCGRID)

[32] Smith, M. G., and L. Bull. Genetic Programming With a Genetic Algorithm for Feature
Construction and Selection. Genetic Programming and Evolvable Machines, 2005.

[33] Engine, Sun Grid. Http://Gridengine.Sunsource.Net.

[34] Surridge, M, S Taylor, and D Marvin. Grid Resources for Industrial Applications.
Proceedings of 2004 IEEE International Conference on Web.

	 Intended Recipients
	6.1 Introduction
	6.2 Pipeline Service User Requirements
	 6.2.1. Workflow Authoring
	6.2.1.1. Construction
	6.2.1.2 Editing Workflows
	6.2.1.3 Annotating Workflows
	6.2.1.4 Extending the authoring Environment

	6.2.2 Workflow Optimization
	6.2.3 Workflow Execution and Results
	6.2.3.1 Workflow Execution and Control
	6.2.3.2 Viewing Workflow Execution

	6.2.3 Criteria to evaluate related projects

	6.3 Existing Pipeline Authoring and Execution Environments
	6.3.1 LONI Pipeline
	6.3.2. Taverna
	 6.3.3 Kepler
	6.3.4 Triana
	6.3.5. Poor Man’s Pipeline
	6.3.6. Matching of User Requirements
	6.3.7. Observations on Workflow Authoring Environments
	6.3.7.1 LONI
	6.3.7.2 Taverna
	6.3.7.3 Triana
	6.3.7.4 PMP
	6.3.7.5 Kepler

	6.4 Pipeline Gridification
	6.4.1. MOTEUR
	6.4.1.1. Parallelization in Moteur

	6.4.2 Pegasus
	 6.4.2.1. Grid Enabling in Pegasus

	 6.4.3. Matching Technical Requirements
	6.4.4 Suitability of Grid Enabling Frameworks

	6.5 Enactment
	6.5.1. Moteur
	6.5.2 DAGMan
	6.5.3 GRIA

	6.6 Architectures
	6.6.1 GRIA Based Architecture
	6.6.2 Pegasus based Solution
	6.6.3 Taverna – Moteur - A-C Architecture
	6.6.4 Triana based architecture

	6.7 Recommendations
	6.7.1 Kepler
	6.7.2 Pegasus

	6.8. Pipeline Service Design
	
	6.8.1 End to End architecture description
	6.8.1.1 Workflow Authoring Environment
	6.8.1.2 Submission to the Pipeline Service Client

	6.8.2 Pipeline Service
	6.8.2.1 Pipeline Service Web Service Interface
	6.8.2.2 Workflow API
	6.8.2.3 Pegasus

	8.2.4 Pipeline Enactment

	6.9 Research Issues
	6.9.1 Introduction
	6.9.2 Towards Intelligent Workflow Planning
	6.9.3 Suitable Machine learning Approaches
	6.9.3.1 Metrics and Fitness Function
	6.9.3.2 Suitable Machine Learning Approaches

	6.9.3 Methodology

	6.10 Conclusion

	6.11	References

