

Grant agreement no. 211714

neuGRID

A GRID-BASED e-INFRASTRUCTURE FOR DATA ARCHIVING/ COMMUNICATION AND
COMPUTATIONALLY INTENSIVE APPLICATIONS IN THE MEDICAL SCIENCES

Combination of Collaborative Project and Coordination and Support Action

Objective INFRA-2007-1.2.2 - Deployment of e-Infrastructures for scientific
communities

Deliverable reference number and title: D10.1 Gridification Model Specification

Due date of deliverable: Month 12

Actual submission date: 31st January 2009

Start date of project: February 1st 2008 Duration: 36 months

Organisation name of lead contractor for this deliverable: maat Gknowledge

Revision: Version 1

Project co-funded by the European Commission within the Seventh Framework Programme
(2007-2013)

Dissemination Level

PU Public X

PP Restricted to other programme participants (including the Commission Services)

RE Restricted to a group specified by the consortium (including the Commission Services)

CO Confidential, only for members of the consortium (including the Commission Services)

Table of Contents

Glossary .. 3

Executive Summary ... 4

1. Introduction ... 5

1.1. Purpose of the Document ... 5

1.2. Document Positioning and Intended Audience .. 5

1.3. Reference Documents ... 6

2. Design Overview .. 8

2.1. Objectives/ Quality ... 8

2.2. Brainstorming Meetings .. 9

2.3. Rational .. 10

2.3.1. Approach to Design ... 10

2.3.2. Service Orientation .. 10

2.3.3. System Architecture .. 13

3. Preliminary Pipeline Requirements Analysis .. 16

3.1. Complexity in Neuro-Imaging ... 16

3.2. Pipeline Toolkits .. 17

3.2.1. Pipelines vs Imaging Capabilities ... 18

3.2.2. Pipelines vs Software Characteristics ... 21

3.3. End-to-end Use-Case .. 22

3.4. Requirements Analysis Conclusions .. 25

3.4.1. Generalities ... 25

3.4.2. Pipelines‟ Nature ... 25

3.4.3. Pipelines‟ Anatomy .. 26

4. Design Specifications .. 27

4.1. Gridification Introduction .. 27

4.2. Gridification Approach and Model ... 28

5. Conclusions and Future Work ... 30

Bibliographical References ... 31

Appendix A – SPM Pipeline Process Example ... 33

Appendix B – CIVET Pipeline Description ... 37

Glossary

Term Definition
IGT Infrastructure Ground Truth. Level 0 of neuGRID’s infrastructure hosting the GCC and

DCC sites and associated test-bed

GCC Grid Coordination Center. Core (common to all sites) services of the grid infrastructure

DCC Data Coordination Center. Core (common to all sites) services of the database infrastructure

DACS Data Archiving and Computational Site. neuGRID site offering and managering a set of

physical resources

DCS Data Collection Site. End-user sites acquiring data and connecting to a given DACS

Gridification The engineering process of porting an existing application to the grid, so that it can be

executed via the grid enactment environment

Pipeline A pipeline is a set of data processing elements connected in series, so that the output of one

element is the input of the next one (extracted from Wikipedia.org)

Workflow A workflow is a depiction of a sequence of operations, declared as work of a person, work

of a simple or complex mechanism, work of a group of persons, work of an organization of

staff, or machines (extracted from Wikipedia.org)

Imaging Algorithm An application, typically under the form of a Unix-like binary which manipulates imaging

data

LORIS The databasing software used in neuGRID, which offers interfaces to acquire and quality

control data

Cortical Thickness The key concept behind the structure of the cerebral cortex is its thickness. The goal is to

measure the distance between the white matter surface and the grey matter surface across

the entire cortex in order to analyse regional variations within individuals, and more

importantly, across subjects

Healthgrid A grid-based environment in which data of medical interest can be stored and made easily

available to different actors in healthcare systems such as physicians, healthcare centres,

patients and citizens’

SOA Services Oriented Architecture

SOMA Services Oriented Modelling and Architecture

VUmc VU Medisch Centrum

KI Karolinska Institute

FBF Fatebenefratelli

PACS Picture Archiving and Communication System

Voxel A voxel (a combination of the words volumetric and pixel) is a volume element,

representing a value on a regular grid in three dimensional space. This is analogous to a

pixel, which represents 2D image data.

MINC Medical Imaging NetCDF

NetCDF Network Common Data Form

DICOM Digital Imaging and COmmunications in Medicine

Analyse Analyze is an image processing program and data format, written by The Biomedical

Imaging Resource at the Mayo Foundation

GPL General Public Licence

WSDL Web Service Description Language

W3C World Wide Web Consortium

Note: glossary terms are followed by * symbol in the remainder of this document.

http://en.wikipedia.org/wiki/Portmanteau
http://en.wikipedia.org/wiki/Volumetric
http://en.wikipedia.org/wiki/Pixel
http://en.wikipedia.org/wiki/Regular_grid
http://en.wikipedia.org/wiki/3D_computer_graphics
http://en.wikipedia.org/wiki/Pixel
http://en.wikipedia.org/wiki/2D_computer_graphics
http://imaging.mrc-cbu.cam.ac.uk/imaging/UsingAnalyze

Executive Summary

The present document attempts to sketch the neuGRID gridification model and alternatives to be
used for distributing the processing of neuro-scientific pipelines with a concrete application and
test of the neuro-imaging Cortical Thickness* pipeline (see work package 5 – WP5 – for more
information) in the grid infrastructure, expected to take place at the end of year 2 as a validation
case study. Beyond the domain specific application and context of specified models, the presented
design aims to be as generic as possible in order to eventually accommodate with other medical
fields on the long run.

This first version of the document follows/ accompanies the user and system requirements analysis
process, while delivering early insights on possible solutions. It is indeed anticipated that the
document will know a series of refinement iterations in light of the requirements analysis delivery
(at Month 14) and all along the neuGRID platform development.

The document is structured as follows:

Readers should therefore be aware of the preliminary content nature and its expected subsequent
developments. As such, work package 10 (WP10) will deliver an update at Month 24 following the
deliverable “D10.2 Gridified Toolbox Portfolio Report”, which will confirm/ impact on some of the
solutions hereinafter described.

1. Introduction

This active document is meant to be refined all along the neuGRID project lifetime. It aims to
provide a set of high-level design specifications useful to support and structure the developments
of the gridification components associated to the WP10, which are in line with the requirement
specifications being produced as part of the analysis carried out in work package 9 (WP9). Most
specifications within the document are expressed using ad-hoc representations, for which
explanations are provided where and when judged appropriate.

1.1. Purpose of the Document

This document illustrates the design approach and specifications of WP10, processed during the
first 12 months of the project, which have supported and driven the prototyping efforts. This work
has been carried out within the task entitled “T10.1 Algorithms Elicitation & Gridification Models”,
which started at Month 7 and completed at Month 10, with the following objective (extract from
the project description of work):

“Conceptual integration of the different system components developed in WP5/6/7. Evaluate the
existing algorithms in terms of software and hardware dependencies, computing and storage
requirements, and define the level of gridification to be applied. Define a gridification model and
scheduling policy covering all concerned algorithms and expandable to new ones (P4 MAAT, P2
NE, and P3 UWE). A document will be produced by P4 MAAT, P2 NE and P3 UWE illustrating the
adopted approach and resulting implementation of the gridification mechanism (D10.1) (M12).”

In the following sections, the reader will gain understanding on the approach that is driving the
work package and its developments. It establishes the features which the solution should support,
and as such, it is intended to be a useful reference throughout the development and testing phase
of the neuGRID prototype.

1.2. Document Positioning and Intended Audience

WP10 “Algorithms and Pipeline Gridification” aims to make existing brain image analysis algorithms
compatible with the grid environment (the so-called process of "gridification") and to develop the
necessary foundations for their publication, management, sharing, combination, and scheduling in
the neuGRID system. The outcome of this work package will be an algorithm “toolbox” made
available to end-user communities through the platform, which can be discovered, enriched,
invoked and applied in different ways onto a large set of images and clinical records.

More precisely, the work package aims to (extract from the project description of work) (1)
evaluate the existing algorithms‟ implementations and requirements in terms of software
adaptation and interfacing, (2) design and implement a set of distributed and cooperative
optimization methods for facilitating algorithms gridification and their future scheduling within the
platform, (3) design and implement a set of interfaces for managing the algorithms in the grid
(from algorithm publication, to versioning, to training, to sharing), (4) gridify the algorithms, re-
engineer algorithms inner interfaces so that their input/output can be plugged in the grid, (5)
define adapted scheduling policies for the selected algorithms, based on algorithms requirements,
(6) design and develop a grid-based workflow management system for combining, optimizing,
executing and monitoring algorithms, which extends the workflow capabilities of the grid
middleware and addresses fully the brain image processing algorithms needs, and last but not
least (7) extend the scheduling possibilities.

Thus, the presented specifications are destined to serve in priority all protagonists of the Joint
Research (JRA) and Services (SA) activities of the project, more particularly to IT researchers, IT
developers and neuro-scientific algorithm developers involved in the following work packages:

Services Activities – SA

WP Id WP Title WP10 Contribution
WP5 Brain Imaging Services Provision To provide a gridification model specification

and corresponding implementation for brain
imaging services to be published, discovered
and executed in neuGRID‟s platform

WP6 Distributed Medical Services Provision To provide a Workflow/ Pipelining service and
corresponding API for higher level distributed
medical services to submit, execute and
monitor algorithms/ pipelines

WP7 Grid Services Provision To dictate the deployment of necessary
underlying grid services and corresponding
configurations

WP8 Deployment Services Provision To dictate the deployment of necessary
underlying neuGRID services and
corresponding configurations

Joint Research Activities – JRA

WP Id WP Title WP Relation
WP9 User and System Requirements

Analysis
To conform with requirements analysis
conclusions

WP11 Platform Integration, Performance and
Feasibility Tests

To support neuGRID services integration

To a lesser extent, since indirectly concerned (through the natural abstraction of Workflow/
Pipeline authoring environments such as the ones proposed in WP6, see D6.1 for more details),
the Neuro-Scientists and prospective users (e.g. Pharmaceutical industries) as well as inside and
outside reviewers of the project activities, are anticipated as potential additional audience.

1.3. Reference Documents

Prior to reading this document the reader should be familiar with additional documents/
deliverables produced within the neuGRID project, which have or are considered to potentially
impact on the design and developments of WP10. The following is a list of such documents sorted
by information sources, activities and corresponding work packages (Note: list of available
documents at the time of writing):

Services Activities Related Documents

WP Id WP Title Documents
WP5 Brain Imaging Services Provision D5.1. Brain Imaging Service Portfolio

Specification Document
WP6 Distributed Medical Services Provision D6.1. Design Document including API

Documentation and Description of
Functionality for the Underlying Layer

WP7 Grid Services Provision D7.1. Test-bed Installation and API
Documentation

WP8 Deployment Services Provision D8.1. Ground Truth and Phase 1 Deployment
Test and Validation Report

Joint Research Activities Related Documents

WP Id WP Title Documents
WP11 Platform Integration, Performance and

Feasibility Tests
D11.1. AC/DC1 and Story Lines Test Suite
Specification and Report

neuGRID Architectural Considerations
Presentation

(see neuGRID CMS, WP11 directory:
https://www.neugrid.eu/owl-0.90)

Other Related Documents

Title Documents
Project Documents Project Description of Work
Requirements Analysis Supporting Material Workflow related requirements analysis

material, including recordings, meeting
minutes and pipelines examples

(see neuGRID CMS, WP10 directory:
https://www.neugrid.eu/owl-0.90)

https://www.neugrid.eu/owl-0.90
https://www.neugrid.eu/owl-0.90

2. Design Overview

2.1. Objectives/ Quality

As the present document is destined to serve as a reference throughout the WP10 developments,
it aims to satisfy a number of general design objectives:

 Develop a coherent representation of software that will satisfy requirements expressed here and

greater detailed in deliverable D9.1. It gives a preliminary structure to developments, to integration
of external contributions and recalls the design objectives (to be) pursued in WP10. As such,

developing a coherent representation of the software implies actions to be carried out to:

o Decompose the system into sub-systems that provide related sets of services/ components,

enable the separation of concerns, and help in better splitting the work among partners,

o Establish a framework for sub-system control and communication, useful for harmonizing
and gluing the potentially heterogeneous resulting components/ technologies,

 Identify inadequacies in requirements, as early as possible in the development process, supporting

partners to make appropriate decisions over time,

 Provide a reference tool readable by developers, testers, and maintainers. Beyond formalizing what

the system should do, the document also serves as a conceptual map that actors of the project can

consult at anytime to better understand/ locate/ solve technical issues,

 Provide a basis for integration and testing.

As such, the document also attempts to exhibit several qualities:

 Complete: everything that is essential is described. All WP10 system blocks to be
implemented during the project are specified and placed appropriately within the system
architecture,

o Rigorous: expressed in a well-defined notation. Diagrams are formalized, as much
as possible, following standard notations when possible,

o Uniform: the entire document is at the same level of detail and remains an abstract
description of the targeted system,

 Desensitized to change: it voluntarily hides implementation details to remain a high level
specification,

 Modifiable: this document will change over time. As expressed earlier, the presented
specifications will be revised as requirements analyses progress. Thus, it is intended to be
updated at Month 24.

 Confirmable, verifiable and testable, the resulting prototype system should illustrate the
presented specifications. In case of significant deviations, such specifications will be revised
to better understand the mis-matches and their origins, with the aim of re-aligning both
design and developments.

This document addressing the difficult task of shaping up the WP10 design specifications at a
sufficiently high level of abstraction, it will not cover the following aspects:

 Technical Specifications of the prototype system. Indeed, no technologies adopted in the
prototyping phase will be described nor analyzed in the following sections,

 Prototype. The approach undertaken for developing the system as well as the temporarily
adopted technologies will not be discussed.

2.2. Brainstorming Meetings

In order to develop a common language and to seek technical agreement, the neuGRID project
partners have conveyed a number of requirements gathering and technical brainstorming
meetings. The following is a list of major held meetings with corresponding objectives/
achievements over the first year of activity in the project:

Date Location Content

2008-02-04 Fatebenefratelli – Brescia, Italy Project kick-start. Initial series of

requirements meetings and technical

brainstorming on fundamentals of neuGRID

system

2008-03-15 Karolinska Institute – Stockholm,

Sweden

Second series of requirements meetings

2008-03-26 Teleconference Initial Project Management Team (PMT)

Meeting and thus technical brainstorming

2008-04-21 Teleconference PMT Meeting and technical discussion

2008-05-15 VUmc – Amsterdam, The

Netherlands

Third series of requirements meetings and in

person technical brainstorming

2008-07-17 Teleconference PMT Meeting and technical discussion

2008-07-21 Teleconference First Services Area (SA) Teleconference and

corresponding technical discussion

2008-07-31 Teleconference First WP10 teleconference and technical

discussion related to Cortical Thickness

pipeline requirements

2008-10-10 Teleconference Second SA Teleconference. Presentation of

candidate system architecture

2008-10-17 Teleconference First JRA Teleconference. Follow-up to SA

teleconference discussions with elements of

JRA

2008-11-05 Teleconference PMT Meeting and technical discussion

2008-12-01 CERN – Geneva, Switzerland In person technical brainstorming meeting.

Validation of gross system architecture and

responsibilities split between work packages.

Agreement on LORIS integration scheme

2009-01-19 Teleconference PMT Meeting and technical discussion

2009-01-22 PRODEMA – Montreal, Canada In person technical brainstorming meeting

between MAAT, UWE and PRODEMA.

Agreement on technical roadmap for LORIS

integration and grid connection

From this list, it can be noted that all technical partners have participated actively in the design
process thus allowing the collaboration to make reasonable progress over the first year. The six
first months of requirements analysis activity have helped greatly at scoping the design and
precisely understanding the complexity related to imaging pipelines gridification, although further
testing and prototyping is now required following which an update of the document will be
produced.

The major milestone for WP10 over the period has been the system architecture gross design
consensus at Month 9, which has given an accurate framework for the gridification model
specification, as detailed in subsequent sections of this document.

The remainder of this deliverable attempts to formalize part of the thus far gathered requirements
with a special emphasis on workflow/ pipelines of neuro-imaging/ data-mining algorithms and
corresponding possible gridification model.

2.3. Rational

2.3.1. Approach to Design

The major goal that guided the design specification process throughout was to establish a
common coarse-grained view of the system in light of the freshly gathered requirements, useful to
identify major layers, inner constituents and corresponding interfaces, as well as to help in better
splitting the work and responsibilities among the work package members.

Thus, WP11 – in charge of the project platform integration and tests - kick-started the design of
an overall and gross architecture specifying logical layers grouping system functionality per areas.
Similarly to the Service Oriented Modelling and Architecture (SOMA) [1] process, partners went
through the exercise of identifying features and gradually grouping them into layers, to then
specify and implement them.

At the confluences of requirements analysis – following a top-down elicitation process – and
underlying bottom-up grid deployments, WP6, WP10 and WP11 have undertaken kind of a meet-
in-the-middle approach to align system architecture with end-users‟ expectations. The result has
undergone formalization in different documents, respectively D6.1 “Design Specifications of
Generic Medical Services”, D9.1 “User and System Requirements Analysis” and D10.1 “Gridification
Model” using a Services Oriented Architecture (SOA) [2] as the focal meeting point and federating
concept.

As a consequence and to give clarity to this deliverable, only a relevant subset of the resulting
requirements and design objectives is presented, with the aim of covering WP10 gridification
related components. The following section thus briefly presents the service orientation and
associated advantages; aspects which then introduce the retained system architecture and give
clear positioning of WP10‟s contribution.

2.3.2. Service Orientation

The main characteristics of an SOA are the loose coupling between services, the abstraction from

technological aspects and its extensibility; features considered essential to cope with distributed

developments, heterogeneous technologies integration and to leverage multi-partners

collaborations.

SOA provides a simple yet efficient way to reuse software artefacts through the concept of

standard services that are not bound to each other. Technological abstraction is obtained from

using service contracts that are platform-independent. Extensibility is finally reached through

service discovery and composition at execution time. Several definitions of the concept can be

found in the literature, however for the remainder of this document, only the three following are

retained, as they are most relevant to this work:

 "A service-oriented architecture is a style of multi-tier computing that helps organizations share
logic and data among multiple applications and usage modes" as stated in 1996 by the Gartner

group.

 "Service Oriented Architecture is a paradigm for organizing and utilizing distributed capabilities
that may be under the control of different ownership domains. It provides a uniform means to
offer, discover, interact with and use capabilities to produce desired effects consistent with
measurable preconditions and expectations" established in the OASIS reference model.

 "SOA enables flexible integration of applications and resources by: (1) representing every
application or resource as a service with standardized interface, (2) enabling the service to
exchange structured information (messages, documents, "business objects"), and (3)
coordinating and mediating between the services to ensure they can be invoked, used and
changed effectively".

In spite of the absence of a single officially and consensually agreed definition for SOA, three key

roles are usually identified: service producers, service brokers and service consumers. The service

producer‟s role is to deploy a service on a server and to generate the description of this service

(i.e. so-called the service contract), which defines available operations as well as invocation

mode(s). This description is published in a directory of services inside a service broker. Thus,

services consumers are able to discover available services and to obtain their description by

interacting with the service directory. The obtained descriptions can then be used to establish a

connection with the producer and to invoke the desired service operation(s).

Just as for the SOA concept, loose coupling does not benefit from a unique definition. The

commonly adopted approach though is to introduce a minimum of dependencies between services

in order to better support their reusability. Moreover, these services should be combined in order

to quickly and cost-efficiently respond to new demands. To achieve this goal, some engineering

rules which are not always specific to SOA, have been identified [3]. Encapsulation and abstraction

principles originally came from the world of object-orientation. The idea was to hide self-contained

information of a service to end-users and to propose only one stable interface stressing the details

considered to be necessary for handling it. A service is therefore seen as a black box from the

outside, which makes it possible to separate its interface (i.e. its external description) from its

actual implementation. One can thus modify a service implementation without changing its

interface, which turns it into a sustainable model. The following rules are more specific to SOAs:

 (A) A simple and ubiquitous interface must be provided by any service and must be universally

accessible by all suppliers and all customers of services. Thanks to a generic interface, it is

then possible to interconnect any services and to forward any messages between the various

interfaces. The keyword here is “decoupling” and it can take various roles: (1) to reduce the

coupling between modules, for improved reusability, (2) to reduce the coupling with respect to

the infrastructure and to the implementation platform, for improved interoperability and (3) to

reduce the coupling between a service consumer and a specific implementation of this service,

for improved evolution. In Web service architectures, the consensus to achieve this rule is to

use Web Service Description Language (WSDL*).

 (B) Messages delivered by a service should not contain business logic. On the contrary, they

must be restricted to the transport of, and only of, data structures from one service to another.

That makes it possible to modify or to add services without impacting the other services of the

architecture. These data structures can nevertheless be very complex in order to deal with

security management (i.e. authentication, encryption, authorization, etc) or even file transfer.

These aspects are addressed thanks to different specifications that strengthen the “standard”

Web service architecture (e.g. WS-Security, SOAP-attachments, etc).

 (C) A well-formed service must be stateless. This rule, which can seem very constraining, must

be moderated though. It is recommended that the state conservation (i.e. the management of

the context) as well as the action coordination (i.e. the management of the transactions) are

localised in a specific function of the SOA, such as the orchestration. The application of such a

rule facilitates the reuse, the scalability and the robustness of services and thus resulting SOA.

Moreover, this rule enforces the loose coupling.

 (D) Cohesion is a difficult rule to define. It translates the degree of operations and functional

proximity inside a service. In other words, it aims at facilitating the comprehension and

reusability of a service by gathering homogeneous operations belonging to the same functional

area.

 (E) A service should be idempotent. That makes it possible to be unaware of multiple

receptions of the same request. The idea is that the use of such a service makes it possible to

slacken the assumptions of reliability on the communication layer. In Web service architecture,

the WS-Addressing specification allows among other things to enforce part of this rule.

If some of these rules can or sometimes should be moderated according to system requirements,

i.e. the stateless and the idempotent ones, all these recommendations remain vital to create an

open, sustainable and standard SOA. Indeed, these characteristics are mandatory in order to cope

with heterogeneous resources ranging from data, to knowledge, to applications, and beyond

software, to people. The SOA approach makes it possible for a wide range of collaborators having

different skills/ backgrounds to develop together a system extensible to different application areas,

which is of absolute importance in the case of neuGRID.

Aiming at addressing these challenges, the neuGRID partners have therefore started

complementing the grid middleware services offering with neuro-sciences specific logic following

the SOA approach and respecting its cornerstones. They have engaged in the development of an

upperware stack of facilities ranging from generic middleware related services to domain specific

interfaces closer to end-users. The latter materializes under the form of a thin layer of software

services sitting on top of the grid middleware that wraps up and abstracts from underlying

technologies to deliver adapted functionality to end-users, while respecting the SOA model.

The following section briefly discusses the design and corse-grained description of this thin layer

with a special emphasis on its main pillar, i.e. the workflow management components, and in what

extent it conforms to the previously introduced rules for delivering a reusable platform.

This rather incomplete system architecture description aims to mainly give clarity to the approach

chased in WP10 and its gridification model specification. For more detailed information on the

services portfolio, readers are encouraged to read deliverables D5.1 and D6.1, for which

appropriate references have been placed in the introductory “Reference Documents” section.

2.3.3. System Architecture

Turning ongoing requirements analyses into solid initial technical foundations, partners have
invested a significant effort at sketching a system architecture for structuring subsequent design
and developments. The following diagram, i.e. figure 1, thus illustrates the resulting architecture in
terms of logical software layers and corresponding functional areas. It introduces the notion of
horizontal versus orthogonal layers, where respectively horizontals provide system functionality,
whereas orthogonals address non-functional aspects impacting on horizontals.

Starting from the very bottom of the system, i.e. “Backends Middleware”, with IT legacy assets to
be used in the project such as grid and database infrastructures, various abstraction levels are
then introduced. The most important one, so-called “Backends Abstraction”, aims to wrap up
underlying backends and to allow partners to develop grid/ database agnostic software while still
interacting with given technologies and corresponding specificities. Based on this abstraction,
further layers are superimposed which deliver more and more specific functions as distance to
end-users shrinks. As such, “Domain Logic” aims at grouping so-called “medical generic services” –
e.g. medical querying, medical data acquisition and quality control etc – which could be reused in
other medical fields, whereas “Business Logic” only focuses on Neuro-Sciences features, e.g.
cortical thickness pipeline, segmentation/ normalization algorithms etc, which are then accessed by
end-users through a dedicated web portal exposing specialized interfaces.

Figure 1. neuGRID System Architecture – Layer View

Orthogonally, the platform aims to offer various means to trace system activitiy via the
“Monitoring, Logging and Accounting” subset of services. The neuGRID services are delivered
within a secure environment implementing a security scheme as dictated by the requirements,
hence having a “Security” layer spanning from the top business logic, to domain logic and finally
underlying abstraction. The same applies for privacy aspects since dealing with sensitive data and
applications, though essentially impacting on both business and domain logics.

This being said, an additional
meta-level of layers can be
introduced, as illustrated in
figure 2 – on the left, where
functional and non-functional
layers are grouped per levels of
reusability. Thus, horizontal
layers concerned with backends
access/ management, together
with orthogonals like
monitoring, logging,
accounting, workflow
management and security can
be grouped in a set of artifacts
theoretically reusable in all
application areas. Similarly,
layers such as domain logic and
privacy are reusable in other

medical fields, while last but not least, the business logic, as its name implies has a much lower
reusability spectrum since specialized to Neuro-Sciences.

Figure 3. neuGRID System Architecture – Work Packages and Component View

Figure 3 provides more details on the expected services portfolio per layers. Thus one can notice
the grouping of functionality in, for instance, (1) the “Monitoring, Logging and Accounting” layer
where a dedicated service is introduced per aspect. The same applies to (2) “Security” with
authentication and authorization services, (3) “Backends Abstraction” with a functional split
between components related to databases, grid and PACS systems access, (4) “Domain Specific”
logic with hypothetical medical querying, provenance, quality control, imaging data acquisition and
(5) “Privacy” with pseudonymisation and face stripping services.

Figure 2. neuGRID System Architecture – Meta-Layer View

From WP10 standpoint, key elements of this architecture lie in (6) the “Workflow Management”
layer (i.e. surrounded by double black lines in figure 3), where the necessary logic for publishing,
discovering and composing functionality is expected to materialize, most likely under the form of
service utilities. This othogonal layer intends to supply the key SOA mechanisms – respecting rules
introduced in section 2.3.2. Combined with an appropriate gridification model (discussed in next
sections), such generic low-level mechanisms will demonstrate the benefits of virtualization when
applied to a very focussed area such as Neuro-Sciences, with highly specialized applications.

From their experience in similar projects, i.e. EU-funded FP5 MammoGrid [4] and EU-funded FP6
Health-e-Child [5], the neuGRID technical partners intend to make further progress in the field of
medical applications gridification. In particular, there has been significant effort invested and
progress made in grid abstraction and web services orchestration within Health-e-Child, which will

subsequently be capitalized, tested and
compared with related work in the
community to address the neuGRID
challenges; the idea being to not
reinvent the wheel but rather reuse,
consolidate and extend solid
background.

In particular, the Publication, Discovery
and Composition Services from the
Health-e-Child Gateway [6] provide
advanced facilities to manipulate the
SOA offering, based on the latest
W3C* standards. Processes can be
defined using the standard web
services orchestration language and
then turned into workflows of services

mixing grid and web resources, for execution in a distributed environment. The composition
service also supports short running as well as long running processes using state-of-the-art
approaches and underlying technologies. Figure 4 above illustrates the different components of
this solution.

In any case, different possibilities will be considered following the requirements analysis delivery
and tested through concrete prototyping such that the resulting system fully satisfies community‟s
needs. The main assumption in the so far designed and here summarized system architecture is
that all gridification approaches can be supported from very low-level batch processing of complex
task-based job submission to more advanced and state-of-the-art web services composition, thus
opening the pathway to a wide variety of possibilities.

The present document remaining at the design specification level, further technical insights would
not add much to clarity, especially with the requirements analysis still ongoing. The next section
therefore anticipates and focusses on preliminary conclusions which can be drawn from end-users
expectations/ needs and potential tangible gridification model to be applied to Neuro-Sciences
toolkits, with a special emphasis on neuro-imaging.

Figure 4. SOA Framework

3. Preliminary Pipeline Requirements Analysis

3.1. Complexity in Neuro-Imaging

In the study of neuro-degenerative pathologies and more particularly applied to Alzheimer‟s
disease, various parameters are extracted from imaging that can quantify/ qualify the disease
progression/ diagnosis. Parameters such as brain volume change over time, regional changes or
even white matter lesions can be extracted by applying different image processing techniques onto
patients‟ brain scans. However, in almost all cases, such extractions cannot be fully automated and
require the intervention of an expert to slightly tune the process and/ or clean data.

Let‟s take as an example the measurement of brain atrophy rates over time, i.e. the amount of
brain tissue that is lost by Alzheimer‟s patients over, say, one year. This measure is relevant in that
it is the most valid marker of disease activity available to date and is ideal to test the effect of
drugs aimed to slow or arrest its progression.

The first step to undertake in its measurement relates to noise reduction and is aimed to reduce
random variations in images due to magnetic field changes and scanner calibration. Here, the
MRIcro [7] imaging toolkit is used to correct images manually by checking the homogeneity of the
signal over the whole brain. This process cannot be automated and requires trained users in that
inhomogeneities and other artifacts may not always be obvious to a lay eye (e.g. blood vessel may
look similar to brain tissues, noise can appear around the eyes area, etc).

The second step involves the digital extraction of the brain through segmentation of brain from
non-brain voxels*. Here, one of the tools of the fMRIB Software Library (FSL) [8] is used, namely
the Brain Extraction Tool (BET). The operator manually selects areas to be included (i.e. according
to shades of gray, thresholding, etc) and others that should be omitted from the calculation. The
obtained brain volume can be compared to a set of reference brains for diagnostic purposes, or
can be registered (i.e. aligned in the 3D space) to a follow-up image to compute atrophy rate.

The latter is calculated using the SIENA [9] software. This gives as output the difference of the
brain contours between the baseline and the follow-up image in order to compute the actual
shrinkage or increase of the brain size in quantitative terms (in cc or ml), giving a volume ratio
directly indicative of the disease progression.

This simple example of a given process that clinical researchers usually go through to extract
meaningful imaging markers is highly indicative of the toolkits heterogeneity, the somewhat
interactive nature of neuro-imaging pipelines and the complexity inherent to (intermediary) data
cleaning and imaging algorithms parameterization. Offering a harmonized environment to run such
pipelines therefore suggests a flexible yet powerful gridification* model, which gives enough
freedom to researchers to tune processes and interact with the system as needed.

Although it is clearly not the intention of neuGRID to fully develop such a virtualized environment
in its current phase, specifying a gridification* model that could facilitate the development of such
a useful tool on the long run remains WP10‟s main objective.

To do so, it has therefore been necessary to undergo a short study of imaging and data mining
toolkits being used by clinical researchers within neuGRID. The following of this section therefore
attemps to list mostly utilized applications at the three end-user institutions of the project, with
subsequent classification according to diverse criteria (e.g. toolkit, software dependencies, imaging
features, etc). These classifications then help scoping the nature of such pipelines and algorithms
while supporting the formalisation of corresponding use-cases.

3.2. Pipeline Toolkits

The following table lists the pipeline tools that are in frequent use by the research centers as
expressed by end-users. It aims to give a taste on the faced difficulty and heterogeneity of
available imaging/ mining toolkits, whether commercial suites or community software:

Institute Pipeline Tools Analysis Tools

VUmc

fMRIB Software Library (FSL): Flirt, Fnirt, FDT,

FAST, Melodic (visualization tool), Siena, XSiena,

FEAT, http://www.fmrib.ox.ac.uk

 MRIcro, Brain Extraction Tool (BET),

http://www.sph.sc.edu/comd/rorden/mricro.html

 Montreal Neurological Institute (MNI) (BIC Tools

& Software – The Brain Imaging Software

Toolbox): N3.

http://www.bic.mni.mcgill.ca/software/

 BioInformatics Research Network (BIRN)

(Gradiant Non-Linearity Distortion Correction):

Gradient non-linearity.
http://www.nbirn.net/

 DRG Fluid.

 Generic:

o Image calculations (adding subtracting,

multiplying etc)

o Morphological operations on images

o File format conversions

Statistical Parametric Mapping

– SPM
http://www.fil.ion.ucl.ac.uk/spm/s

oftware/

KI

 MNI BIC Tool – CIVET Pipeline

http://wiki.bic.mni.mcgill.ca/index.php/CIVET ,

 FSL,

 Brainvoyager http://www.brainvoyager.com/

 Matlab http://www.matlab.com ,

 Analysis fo Functional NeuroImages (AFNI),

http://afni.nimh.nih.gov/afni/

 E-prime http://www.pstnet.com/ and

 Statistica.

Hermes (Hermes Medical) B-

MAP (Pipeline 1 and Pipeline 2)

http://www.hermesmedical.com/

FBF

 FSL Tools fMRIB’s Diffusion Toolbox FDT 2.0,

Melodic

 MNI BIC Tools:

 Display, register, Brainsuite

 LoNI http://www.loni.ucla.edu/Software/ tools:

 Dual_warpe_warpcurve, Decoder_blend_all,

 SPSS http://www.spss.com/,

 Statistical Parametric

Mapping – SPM, Matlab,

Quanta 6.1

http://www.fmrib.ox.ac.uk/
http://www.sph.sc.edu/comd/rorden/mricro.html
http://www.bic.mni.mcgill.ca/software/
http://www.nbirn.net/
http://www.fil.ion.ucl.ac.uk/spm/software/
http://www.fil.ion.ucl.ac.uk/spm/software/
http://wiki.bic.mni.mcgill.ca/index.php/CIVET
http://www.brainvoyager.com/
http://www.matlab.com/
http://afni.nimh.nih.gov/afni/
http://www.pstnet.com/
http://www.hermesmedical.com/
http://www.loni.ucla.edu/Software/
http://www.spss.com/

mk_seg16bit, mk_gray,

add_gray_to_inflated_LEFT1,

add_gray_to_inflated_RIGHT1,

pmap_apeVSctrl, make_UVL_*;

1st_script_tracer_avg_DIAG;

2nd_script_core_test_L_DIAG;

2nd_script_core_test_R_DIAG;

Pmap_DistCore_DIAG

 MRIcro (MRIcro) (visualization)

 BET Function

 IdeALab Tools (IdeALab)

http://neuroscience.ucdavis.edu/idealab/softwa

re/index.php

 Image Conversion software

 MRIconverter

 dcm2nii

 New Promising Tools:

 3D Slicer, VTK, Freesurfer, MPIAV, NA-

MIC Kit components, MED-INRIA,

BrainVoyager, BrainMAP

 R (R) http://www.r-project.org

 Statistical Parametric

Mapping – SPM

This list demonstrates that end-users develop preferences over time from personal experience and
projects, which lead them to use various combinations of toolkits/ algorithms to extract complex
features. From these only three centers short survey, one can notice that there are however a few
common tools, as highlighted in the following table.

F
SL

M
N

I/
B

IC

L
o

N
I

SP
M

M
R

Ic
ro

/B
E

T

SP
S

S

H
E

R
M

E
S

Id
ea

la
b

M
at

la
b

R

A
F

N
I

E
-P

ri
m

e

St
at

is
ti

ca

D
R

G

B
IR

N

B
ra

in
V

o
y

.

Q
U

A
N

T
A

VUmc X X X X X X
KI X X X X X X X X
FBF X X X X X X X X X X

As a conclusion to this initial comparative table, FSL, MNI/BIC, SPM, MRIcro and Matlab seem to
be the most common set of (neuro) imaging and data mining toolkits being used by our Neuro-
Scientists.

3.2.1. Pipelines vs Imaging Capabilities

The following table gives a list of popular toolkits and corresponding image processing capabilities
used to respectively normalize data, convert image files, anonymize data, extract features from
within images and process statistics. This classification aims to introduce the notion of categories,
that resulting neuGRID system could use to sort out year 2 gridified algorithms portfolio (see
D10.2 at Month 22).

Main
Category

Type of Processing Pipeline / Algorithm Toolkit

Pre &
Intermediar

Normalization Linear and nonlinear (correction factors) SPM
Segmentation (voxels labelling priors-based) SPM

http://neuroscience.ucdavis.edu/idealab/software/index.php
http://neuroscience.ucdavis.edu/idealab/software/index.php
http://www.r-project.org/

y Processing Warping (sulci based) LoNI
Warping (intensity based) MNI

File Conversion Dicom to MINC MNI
Dicom to Analyze MNI

MRIcro
Anonymization Face Scrambling LoNI

Pseudonymization --
Research Segmentation Cortical Density SPM

LoNI
Cortical Thickness LoNI

 Hippocampus Atrophy (shrinkage) LoNI
Hippocampus Volume MNI

LoNI
 White Matter Volume and Distribution IdeALab
 Cortical Thickness MNI
Statistics Cross Population Patterns --

Diagnostic Segmentation Cortical Density SPM
 Cortical Contour Drawing + Voxels Counting MNI
 White Matter Age Related Scale (Wahlund) --
 Regional Brain Metabolism Alterations HERMES

While this categorization will certainly gain in clarity and structuring when formalized as part of the
requirements analysis, it is already clear that algorithms/ pipelines can be classified whether they
are used to (1) convert, (2) normalize, (3) anonymize data or to (4) extract meaningful
measurements through imaging segmentation and (5) process statistical analyses.

Beyond classification and along the lines of thus far gathered requirements, this wide variety of
toolkit utilities indicates that there is a generalisable pipeline model. Clearly, four steps tend to
shape, as illustrated in figure 5 below (and as is verifiable in end-users‟ process descriptions – see
Appendix A – SPM Pipeline process for a concrete example).

Figure 5. Pipeline Meta-Process

(1) Data Conversion and Normalization
Before executing any pipeline of algorithms, the initial step consists in normalizing the data (i.e.
making it comparable) and converting it into an appropriate format for further analysis. In some
cases, clinical researchers apply a selection of normalization algorithms and then manually trace
brain structures or clean images slice by slice to allow for deeper computer aided analysis. Such
manual annotation/ quality control processes are time consuming. For instance, when an expert
wants to trace brain structures, it takes approximately:
- For total brain volume: ¼ hour for 1 patient,
- For Hippocampus volume only: ½ hour for 1 patient.

Normalization algorithms are selected according to the modality and quality of data, which can
vary slightly from one imaging device to another due to calibration differences. For this reason,
normalization from time to time does not work or outputs wrong results. Neuro-Scientists therefore
have to assess the quality of the output data, thus introducing a human interaction requirement in
the loop. Normalization is a “no-return” process; this is the reason why original data is always kept
in a separate place. All processing steps are usually traced and intermediary data also stored in a
separate folder, for the very same reason.
Note: the data acquisition process is not taken into consideration in the present.

(2) Data Segmentation
Once the data has been quality assessed, a concrete measurement is extracted. In the context of
neuGRID, researchers usually investigate morphological or functional changes and lesions by
measuring for instance how thick the cortex is, from structural imaging. This is done by applying a
given pipeline of image processing algorithms onto brain images. Such pipelines are either
existing/ tested ones that a researcher applies straight away onto his dataset or a pipeline freshly
specified from the combination of different algorithms and sometimes fragmented between
different toolkits.

Once a given pipeline is executed, researchers in almost all cases have to check intermediary data
quality, i.e. data produced at the various stages of the pipeline. This assessment is again operated
visually and can lead to additional data cleaining or even re-execution of the concerned pipeline
step(s), so that subsequent processing is successful. Recalling figure 5, there is therefore a cycle
established between steps (1), (2) and (3) while a given pipeline is running. Also noticable from
discussions with end-users, the expertize related to pipelines (i.e. algorithms parameters, wokflow/
pipeline description, etc) is stored in a separate report using an ad-hoc format. In other words, the
knowledge associated to a given pipeine is never expressed using a standard notation (nor turned
in machine-processable specifications).

(3) Data Visualization and Comparison
As formerly introduced, data visualization can occur at various stages of the pipeline. It can be
operated at the outset to visualize the resulting extraction or after given steps of the pipeline
execution in order to visually check the output quality of concerned algorithms. In the latter case,
visualization supports the quality control process, whereas in the former it allows end-user to
validate his measurement or pipeline, as well as to compare the measurement with other
experiment results or references.

(4) Statistical Analysis
Recalling the section introductory example, statistical analysis may be applied for interesting
measurements onto a large set of patients‟ scans. In the case of brain atrophy for instance, it
would mean running the MRIcro and FSL pipelines several times, as is illustrated in figure 5 with a
series of arrows on the right, onto different patients‟ brains and corresponding follow-ups to obtain
an indicative atrophy percentage over a given population.

3.2.2. Pipelines vs Software Characteristics

This last table provides detailed information about popular pipeline toolkits in terms of supported
Operating System(s) (OS), licensing conditions, programming languages and data formats, while
recalling available imaging features. This is useful to understand the potential difficulty which will
be faced to gridify a given toolkit.

Criteria /
Pipelines

OS

Licensing Prog.
Language

Supported Data
Format

Features

SPM OS Independent GPL* Matlab Analyze, NIftTI-1*,
MINC*

Images Visualization
Segmentation (apriori-

based)
Registration (linear and

affine)
Warping (Jacobian)
Volumetric Analysis

(density and volume)
fMRI analysis
PET analyses

FSL MacOS X, Windows
NT / 2000, Linux

and SunOS / Solaris

FSL* License C / C++ Analyze*, NIftTI-1* Images Visualization
(FSLview)

Segmentation (FAST)
Registration (FLIRT)

Affine Warp
cross-sectional (SIENAX)
and longitudinal (SIENA)

Volumetric Analysis
fMRI analysis (FEAT)

Independent Component
Analysis (MELODIC)
Tractography (FDT)

Diffusion tensor
voxelwise analysis (TBSS)

LoNI MacOS X, Windows
NT / 2000, Linux

and SunOS/Solaris

LoNI Software
Licence

Java AFNI BRIK,
Analyze*, bshort /
bfloat, DICOM*,

MGH/MGZ,
MINC*, MINC2,

NIftTI-1*

Image conversion (MNI
toolkit)

Non-uniformity
correction (MNI)

Segmentation (MNI)
Warping (sulci based; flat

maps)
Image visualization

(DISPLAY)
IDeALab Linux (Fedora core)

+ SunOS/Solaris
PV-Wave &

Quanta
license

PV-wave,
Shell

Scripting

Analyze*, Quanta,
Interfile

Image conversion
Images Visualization (sv)

WMHs Segmentation
(Quanta)

Linear Registration
Warping (Spline)

B-MAP
/
HERMES

Unix for backend,
Windows for

frontend

HERMES
Commercial

Licence

--- --- Image Conversion,
 Interpolation, Template

of reference brains,
Masking of extra-cranial
tissue, Morphing, Signal

Inhomogeneity (Bias
field), Tissue

Segmentation (Gaussian

http://www.nitrc.org/softwaremap/trove_list.php?form_cat=221
http://www.nitrc.org/softwaremap/trove_list.php?form_cat=219
http://www.nitrc.org/softwaremap/trove_list.php?form_cat=219
http://www.nitrc.org/softwaremap/trove_list.php?form_cat=219
http://www.nitrc.org/softwaremap/trove_list.php?form_cat=201
http://www.nitrc.org/softwaremap/trove_list.php?form_cat=207
http://www.nitrc.org/softwaremap/trove_list.php?form_cat=221
http://www.nitrc.org/softwaremap/trove_list.php?form_cat=219
http://www.nitrc.org/softwaremap/trove_list.php?form_cat=219
http://www.nitrc.org/softwaremap/trove_list.php?form_cat=219
http://www.nitrc.org/softwaremap/trove_list.php?form_cat=201
http://www.nitrc.org/softwaremap/trove_list.php?form_cat=207
http://www.nitrc.org/softwaremap/trove_list.php?form_cat=201
http://www.nitrc.org/softwaremap/trove_list.php?form_cat=207

Estimation, Fuzzy Cluster
Analysis), Segmentation

with ROI Analysis.
MNI MacOS X, Linux and

SGI IRIX
--- C, Perl, (some

Java for
visualization)

MINC*

Image Conversion,
Images Visualization,
Anatomical Regions

Labelling, Sulcal
Extraction, Cortex
Extraction, Image

Resampling, Statistical
Analysis

This table gives concrete technical hints on the toolkits gridification* applicability. Indeed, it shows
that most of them are not cross-platform, except SPM. Toolkits accept potentially different file
formats – although image converters exist – and last but not least, toolkits are developed under
diverse programming languages.

From interaction with end-users and with concrete demonstrations during requirements meetings,
it is noticeable though that in spite of these differences, (almost) all toolkits algorithms materialize
under the form of Unix-like binaries/ scripts/ libraries. This simplifies greatly, if not eliminates –
technically speaking, the problems related to data flows in such pipelines. Indeed, by doing so
algorithms only have to deal with simple input and output types such as strings of characters,
whether being a configuration value for the algorithm itself or a physical path to target image files.
This strengthens and confirms the grid relevance and applicability to neuGRID.

The next section presents an extract of ongoing requirements analysis with an end-to-end use-
case illustrating the spectrum of functionality that neuGRID is attempting to satisfy. The section
then delivers preliminary conclusions by qualifying pipelines and thus introducing possible
gridification approaches.

3.3. End-to-end Use-Case

Figure 6. End-to-end Use-Case

Figure 6 above introduces neuGRID‟s end-to-end use-case, which attempts to give an overview of
the system functionality from initial data acquisition on the left, to validation of scientific workflows
and their sharing on the right, as well as provenance data analysis at the bottom.

http://www.nitrc.org/softwaremap/trove_list.php?form_cat=221
http://www.nitrc.org/softwaremap/trove_list.php?form_cat=201
http://www.nitrc.org/softwaremap/trove_list.php?form_cat=207

As far as workflows/ pipelines requirements are concerned in the middle of figure 6, a number of
indicative use-cases have been formulated thus far, which have undergone detailed specification
for delivery in D9.1 at Month 14, such as:
- Construct, visualize, annotate and edit new workflows,
- Work with draft workflows and use version control to manage them,
- Visualize, annotate and edit existing workflows,
- Search for existing research sets or define new groups of images and other information to be

processed using the workflow,
- Run, monitor and control the execution of a workflow. This would involve perhaps the ability to

cancel, edit and restart an execution
- Search for and select the desired analysis pipeline from a set of existing workflows, edit

settings if required and execute
- Search the history of a given workflow to find a particular version of it for use in a specific

piece of research
- Store a history of each workflow execution, research set and settings. Allow user annotation of

such information
- etc

Indicative use-cases have been sorted out per functional areas like “Workflow Specification and
Development”, “Workflow Execution and Management”, “Validation of Workflows”, “Sharing of
Workflows” and corresponding requirements are being formalized and prioritized. The following
table attempts to however list draft requirements as were gathered from end-users.

(A) Workflow Specification

1 The system should offer ways to store/ provide information about data that a given workflow cannot

process. Some sorts of annotations and corresponding interfaces would be helpful. These annotations,

at a first glance, could reside at the level of data rather than at the level of the workflow description,

as raised by the users. Such a feature would prevent from executing workflows on inappropriate data.

2 Workflows and algorithms should be categorized and documented. Newly designed workflows and/or

existing algorithms should be stored and sorted out according to some project/standard classification.

Some of the popular neuroimaging toolkits do have their own classification/terminology, which could

be reused (and possibly extended with additional features).

3 Workflows should be versioned and their descriptions contain information about underlying toolkits

versions as well. That would allow the platform to keep up with the speed of toolkits evolutions, while

ensuring that former workflows can still run with appropriate versions of concerned libraries.

4 Eventually the system should offer the possibility to edit the source code of given algorithms.

5 Workflow descriptions should be stored, made editable and reusable in other workflows. This

authoring environment should allow users to easily navigate through their previous descriptions,

import, extract, share, and execute on demand.

6 Eventually the system should offer possibilities to share workflow descriptions with other researchers.

As of today, such sharing materializes under the form of scripts emailing and accompanying technical

explanations to run those.

(B) Workflow Validation

1 The system should offer instrumentation tuning possibilities. Workflow descriptions should be

accompanied with test data samples that can be run at any time for validation purposes (i.e. a “make

test”).

2 The system could introduce the notion of workflow execution “goodness” to allow comparison of

workflow parameters tweaking and to verify workflows coherence on the long run.

3 The system could eventually provide batch test processing and statistics about workflows executions,

which would allow monitoring published workflows continuously.

4 The system could eventually propose appropriate viewing applications when a user would like to

verify a given workflow/processing step.

(C) Workflow Execution

1 The system should allow re-processing inner steps of a workflow being executed, at the request of a

user. For instance, in case the output of a certain task/execution step is not satisfactory, user should

be able to modify some of its execution parameters and/or reprocess it on demand.

2 Workflows are made of processing steps and sometimes integrate other predefined workflows.

Workflows usually have pre-processing/processing/post-processing phases.

3 Workflows are essentially sequential and asynchronous in nature (very similar to shell-like

applications). Very rarely such workflows can be designed distributed as they act on a well-defined

and single location dataset. Sometimes users need to execute several workflows in parallel, meaning

groups of workflows being executed in different locations, while the workflow itself is run on a single

computer.

4 The system should allow holding, resuming and stopping workflows being executed at any moment at

the request of the user.

5 The system should keep track of workflow execution logs from data access, to data modification and

workflow execution errors of any type.

6 Workflow execution should be interactive with possibly long and short runtimes. A completed

workflow or any of its inner steps should be verifiable by the user. At any moment the user should be

able to check the output of a given step by visualizing or reading the outcome with appropriate

applications.

7 The system should store the output of workflows, which can be of different types, ranging from ad-hoc

files, to structured XML resultsets or images.

8 The system should guaranty toolkits/ libraries versions before executing a given workflow.

9 The system should allow designing workflows of algorithms coming from different toolkits. That would

allow mixing different toolkits and would open the pathway to new interesting combinations.
10 Inner steps of workflows should be considered as reusable building blocks (i.e. black/grey boxes).

Eventually the system could offer generic wrappers to attach new algorithms/ workflows or tune

existing ones. This functionality is actually important as users usually have to adapt existing

algorithms’ output to fit the input of subsequent ones.
11 The system should take care of automatically converting the data to appropriate formats when

executing inner processing steps of workflows. It therefore should know about data format

requirements for all of the available algorithms/workflows in the system.
12 The system should allow when possible to batch process data and offer scheduling optimization means

accordingly in the case of automated pipelines.

(D) Workflow Authoring Interface

1 The system should allow workflow authoring in different ways. The corresponding interface(s) should

therefore allow from simple graphical design of workflows, to more advanced “live” scripting.

Scripting is the favored interface, i.e. users tned to not trust graphical user interfaces (GUI) much and

fear to be limited (e.g. GUI limitations of MIDAS toolkit).

2 The workflow GUI should be independent somehow of the underlying platform actually executing the

processes. A user should have the possibility to use one or the other independently.

3 The interface should offer/ integrate visualization tools to allow for data verification, result browsing

and so-forth. Ideally the system should be able to integrate with existing visualization tools, that users

are used to use.

4 The interface should offer workflow execution logs browsing facilities, to allow user to efficiently

trace their executions and identify bad performing processing steps.

Note: design constraints are still being analyzed and are thus not presented in this document.

3.4. Requirements Analysis Conclusions

3.4.1. Generalities

From the so far formalized requirements and studied pipelines toolkits, a number of conclusions
can be drawn. It has been consensually agreed that an analysis pipeline* corresponds to so-called
workflow* in computing terminology. In the context of the project a workflow might be defined as
a structured process and data flow through a series of steps that can be executed by a user.
Analysis techniques may take an image as an input and return a new image with certain features
enhanced, other methods can result in statistical output. This illustrates that there is a huge range
of variations in the complexity of workflows that are required. Each research project/ study is likely
to have a different set of requirements. It is clear therefore, even at this early stage of the project
that a highly flexible and adaptable workflow construction and execution environment is necessary.

The construction of new pipelines or workflows is a difficult task. Results need interpretation at
each stage in the process if errors and bad results are to be avoided. An understanding of the
underlying algorithms is required to be able to do this. Many algorithms are for generic image
processing and are not specially designed for clinical purposes. This means that there can be some
difficulties in bridging the gap between theoretical image processing and clinical requirements.
Experience is vital to the successful handling of this process. Initial processing of the images is
also often required to ensure that they all conform to a standard format that can be accurately
compared. In some cases the final results need further interpretation if meaningful conclusions are
to be reached.

A major issue is that image processing and analysis can take a long time to complete. Pipelines
commonly run batches of each step on each image, steps that paradoxically are in most cases
short runtimes. This means that for of a study of say 500 people, the pipeline would carry out step
one on each image or 500 times, before taking the output and going on to step 2 which would be
carried out 500 times and this would continue until the end of the pipeline was reached.

Fault tolerance is also important because a failure at any point during the execution of a pipeline
may invalidate the results that are produced. Images must therefore be selected carefully
otherwise inconsistencies in them may have unintended consequences. There are examples where
studies have proven that erroneous results can creep in when care is not taken during image
selection. Bad images are normally discarded early on in the process. Some analysis steps take a
few seconds others several hours, especially if large studies are involved. A robust means of
running, execution tracking and speeding up complex processing algorithms would be useful to
researchers.

3.4.2. Pipelines’ Nature

By extracting from the design objectives formulated in section 3.3 only those related to pipelines,

which are considered to potential impact on the gridification model, one may generalize intrinsic

pipeline characteristics as follows:

1. Pipelines encompass Significant Added-Value: pipelines are not just
sequences of algorithms. They encompass domain knowledge which is essential to
Neuro-Scientists. Their descriptions thus have to incorporate such knowledge

A.1, A.2,

A.3, A.6,

D.1, D.2

2. Pipelines are Heterogeneous: pipelines utilize various technologies/
environments and sometimes are fragmented across different toolkits

C.9, C.10

3. Pipelines are Interactive: outputs of inner steps have to be checked in most C.1, C.6

cases to assure successful execution of following ones

4. Pipelines are Iterative and Recursive: in case of bad outputs, pipelines or
inner steps have to be executed again. Pipelines can also be composite, i.e. pipeline
of pipelines

C.2, C.4

5. Pipelines are mainly Task-based: processing steps are in most cases executable
code enacted using ad-hoc or scripting languages describing command lines and
associated parameters

C.3, C.10

6. Pipelines are mainly Sequential: they in most cases consist of a series of steps
executed in series (especially true for voxel*-based image processing). Few cases
require parallelism (or could be parallelized), taken aside statistical analyses where
the same pipeline is run onto a large dataset thus executable in batches over
multiple processing nodes to optimize overall runtime

C.3

7. Pipelines are Computing Intensive: image processing algorithms used in
pipelines usually have short runtimes but are applied to several images and many
times, thus making overall pipelines processing times quite long

C.12

8. Pipelines are Data Intensive: image processing algorithms usually output
intermediary imaging data for inputting in next steps of the pipeline. Pipelines thus
tend to produce „n‟ times the initial dataset volume, where „n‟ is most likely equal to
the number of segmentation steps

C.7

3.4.3. Pipelines’ Anatomy

From formerly described nature, current pipelines in Neuro-Sciences constitute a very good case
for gridification. One common characteristic seems to clearly shape, which is the form under which
inner algorithms materialize, whatever toolkit they are part of. Indeed, imaging algorithms are
mainly about Unix-like binaries/ scripts/ command line interfaces (CLI) accepting/ producing simple
strings of characters respectively as input parameters and/ or as output values. This is what figure
7 illustrates below (by recalling the conceptualization introduced in section 3.2.1, i.e. figure 5).

 Figure 7. Pipeline Anatomy

In figure 7, a complex pipeline is illustrated which combines algorithms from three different
toolkits, but where algorithms themselves have the same anatomy. For a more concrete example
of pipelines‟ anatomy, see “Appendix B – CIVET Pipeline”.

The next section introduces the gridification approach and resulting model that authors want to
bring forward. An initial high-level description of the model is provided to demonstrate in what
extent it addresses pipeline specifities but also how it could cope with future extensions.

4. Design Specifications

4.1. Gridification Introduction

Various projects around the globe are utilizing grid infrastructures to support biomedical

applications. In the US, most notably the caBIG™ initiative (http://cabig.cancer.gov/) founded by

the National Cancer Institute (NCI) in 2004 to speed discoveries in cancer research by linking

research institutes and healthcare providers by enabling “the collection, analysis, and sharing of
data and knowledge along the entire research pathway from laboratory bench to patient bedside”.

In Europe, Information and Communication Technologies (ICT) for health is one key component of

the Sixth and Seventh Framework Programmes by the European Commission. Several projects

besides neuGRID combine biomedical applications and grid infrastructures, for example:

 @neurIST (http://www.aneurist.org) focuses on integrative decision support systems based on

multi-scale computational suites for personalised brain aneurysm rupture risk assessment and

treatment,

 ACGT (http://www.eu-acgt.org/) develops semantic and grid-based technologies in support of

post genomic clinical trials in cancer research, targeting mainly breast cancer and paediatric

nephroblastoma,

 ViroLab (http://www.virolab.org/) develops a virtual laboratory for infectious diseases that

facilitates medical knowledge discovery and decision support by allowing, e.g. to relate

genotypes to drug-susceptibility phenotypes, and

 Health-e-Child (http://www.health-e-child.org) focuses on clinical decision support and

knowledge discovery systems in paediatrics based on vertically integrated data for assisted

diagnosis and personalised treatment of cardiomyopathies – Tetralogy of Fallot (ToF), juvenile

idiopathic arthritis and brain tumours – gliomas.

Further related research includes applying grid technologies to content based image retrieval in
radiology [10] and distributed medical image analysis [11], as well as efforts aiming at semantic
data integration allowing services to be composed into meaningful workflows [12].

Thus, significant work has already been pursued in the area of applications migration to the grid.
So-called gridification is concerned with porting or developing projects/ applications business logic
to software jobs that can further be scheduled in a grid environment. Depending on the
application nature and underlying grid technology, this process can become very complex and
invasive. While executing non-interactive monolithic Unix-like sequences of CLIs* in grid
middleware such as EGEE gLite [13] or Globus [14] can be straight forward (when scheduling
optimizations are not considered), it is not the case for modern parallel modular applications
involving human interactions and asynchronism. Things get even more complicated when one
wants to make full use of the grid capabilities with an application that was not originally designed
for running in such distributed environments. In this case, reengineering might be needed;
gridification may become highly invasive and last but not least introduce execution overheads.

http://cabig.cancer.gov/
http://www.aneurist.org/
http://www.eu-acgt.org/
http://www.virolab.org/
http://www.health-e-child.org/

Accompanying today‟s major fundamental grid paradigms, there are two conceptual approaches
distinguishing which address this challenge. On the one hand, so-called task-based job submission
relates processing to executable code described as a computation task, hereinafter referred to as
“gridification”. On the other hand, so-called service-based execution handles processing as
workflows of web services orchestrated in a surrounding SOA, hereinafter referred to as
“servitization”. While the former applies well to some of the problems faced in neuGRID (i.e. see
pipelines‟ nature, points #2, 5, 6, 7 and 8) and could constitute an interesting short term solution,
it does not abstract end-users from the grid specificities nor does it facilitate interactivity, and
depending on applied scheduling policy, can introduce considerable overheads (e.g. when
executing multiple short runtime stages such as the ones most likely to be faced in neuro-
imaging).

While gridification and servitization greatly differ in principles – e.g. data input/output, discovery
mechanisms, etc – the present design specification argues interesting complementarities, to
address neuGRID‟s objectives. This is what the next section elaborates on.

4.2. Gridification Approach and Model

The approach chased in WP10 is one that advocates a hybrid model sitting in between gridification
and servitization of the business logic. Indeed, it is authors‟ belief that using jointly both concepts
would significantly help addressing all formerly raised specificities of neuro-scientific pipelines and
introduces the necessary flexibility to accommodate with new applications integration on the long
run, especially thanks to the virtualization/ abstraction dimension brought in by the SOA paradigm.

In particular the model here presented is based on former investigations conducted in the Health-
e-Child project [15] and by collaborators involved in the development of the so-called MOTEUR
workflow engine [16]. The former pionneered a sound SOA framework to efficiently and rapidly
create secure simple, ubiquitous, loosely-coupled and stateless web services (see section 2.3.2 for
detailed explanations of SOA rules). The latter introduced the notion of a generic web service
wrapper [17] embedding legacy codes in service-based workflows (see [17] for an exhaustive
review of legacy code wrapping approaches).

Authors‟ aim is therefore
to integrate, extend and
complete the above
concepts based on
respective concrete
investigations and
scientific conclusions.

The survey of neuro-
sciences toolkits (and in
particular [19]) conducted
for the sake of
requirements analysis, has
shed light on interesting
practices in the
community, which when
contrasted with current
Web services workflow
authoring environments
has opened the pathway
to hybrid thinking.

Figure 8. Gridification Model

This is what figure 8 above illustrates, by recalling the ad-hoc representation used in section 2.3.3.
The proposed approach relies on the following 3 key points:

- (1) Using a so-called generic “gluing service” to submit job execution orders to underlying grids

(see deliverable D6.1 for more information on neuGRID‟s gluing service design specifications).
The gluing service abstracts upper layers of the system from grid specificities and is
responsible for actual job submission. Note that this is in line with the conclusions of [18].

- (2) Using a generic web service wrapper to embed legacy code and optimize resulting job/
pipeline scheduling at execution time, which is of absolute relevance in the context of neuro-
imaging toolkits, given their algorithms non-functional similarities.

- (3) Instantiating a unique web service wrapper per algorithm/ pipeline to be published in the
neuGRID SOA, thus allowing (both atomic and composite) processing tasks to be discovered,
composed and subsequently published as new ones. See [19] for a similar approach with
different implementation and technology.

Conceptually speaking each of these 3 substrates, plays a different but key role. While (1)
introduces abstraction from grids and thus allows interacting with a variety of middleware, (2)
takes care of appropriately parameterizing (1), characterizes commonalities of algorithms/
pipelines and opens a broad avenue to job scheduling optimization techniques (e.g. jobs
grouping). (3) on the other hand and beyond parameterizing (2), turns this ecosystem of
virtualized neuro-utilities into a set of publishable, discoverable and composable entities, which are
very close to end-users‟ expertize.
Note that (3) slightly differs from the approach undertaken in [18], as it is a direct consequence to
the strict application of SOA‟s rules, as presented in section 2.3.2. The expected result is a service
that can be used directly by end-users to execute a given algoritm.

The combined use of these three elements within neuGRID‟s SOA is believed to constitute a
tangible solution to address formerly gathered pipelines‟ characteristics. See the following table for
a detailed mapping (recalling table introduced in section 3.4.2 and focussing on aspects which are
not obvious ta tackle in a task-based approach):

1. Added-Value Pipelines can be specified as workflows of web services, in spite of having

concrete algorithms published in the grid. Current W3C standards allow

describing such complex workflows and encompassing semantics/ annotations

to store and machine-process associated knowledge/ expertize (see WSBPEL -

http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsbpel,

and SAWSDL - http://www.w3.org/2002/ws/sawsdl/)

2. Heterogeneity Exposing algorithms and pipelines as Web services makes them virtualized/

abstracted and thus allows composing new pipelines with algorithms coming

from potentially different toolkits and running in different environments

3. Interactiveness Web services are naturally indicated for satisfying such requirements as they

act as blackboxes triggered by an orchestration entity within the SOA. The

orchestration entity and underlying workflow capability are the ones basically

offering such interactiveness

4. Iterativeness and
Recursiveness

While virtualizing algorithms through web services, the introduction of a

generic web service wrapper allows applying scheduling optimization

techniques. In the case of highly recursive pipelines of short runtime

algorithms, optimization could be obtained by grouping jobs prior to

submission to the grid

http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsbpel
http://www.w3.org/2002/ws/sawsdl/

5. Conclusions and Future Work

This document presented a preliminary analysis of the neuGRID project end-users and system
requirements, with the aim of formulating a set of design objectives, constraints and conclusions.
By doing so, authors engaged in a survey process, which helped them understanding better the
faced issues. Following this, a significant effort of conceptualization and formalization has been
invested (and still is ongoing) to produce a relevant analysis as well as a first gridification model to
be applied to neuro-scientific pipelines of algorithms.

The proposed model has been designed from past but similar experiences and is based on early
requirements analysis conclusions. It constitutes an interesting mix of existing technologies while
attempting to bring the SOA benefits closer to end-users. The model is expected to evolve as
further prototyping tests will be undergone.

In particular, the intention is to apply it to the Cortical Thickness neuro-imaging pipeline as an
interesting validation case study for delivering detailed results at the end of project year 2. Beyond
concept validation, this case study will also help improving the corresponding implementation.

Last but not least, the proposed approach is also anticipated to open the pathway to interesting
side research work such as the use of model driven engineering (MDE) techniques [20, 21] within
the generic Web service wrapper to dynamically change scheduling policies (e.g. grouping
optimization vs isolation, middleware selection, etc), as well as within the orchestration entity to
address non-functional aspects such as Ethical, Legal and Socio-Economical (ELSE) constraints.

Bibliographical References

[1] Arsanjani, A. (2004). Service-oriented modeling and architecture, IBM technical article.

Retrieved October 20, 2008, from http://www.ibm.com/developerworks/library/ws-soa-design1/ .

[2] C. M. MacKenzie et al. Reference Model for Service Oriented Architecture 1.0, OASIS
Committee Specification 1, 2 August 2006
[3] Papazoglou, M.P. (2003). Service-oriented computing: concepts, characteristics and directions.
In Proceedings of the 4th International Conference on Web Information Systems Engineering,
WISE 2003, Roma, Italy.

[4] McClatchey, R., Manset, D., & Solomonides, T. (2006). Lessons learned from MammoGrid for

integrated biomedical solutions. In 19th IEEE Int. Symposium on Computer-Based Medical Systems,
CBMS 2006.

[5] Health-e-Child, The EU FP6 Information Societies Technology Project. (2008). Retrieved

October 20, 2008, from http://www.health-e-child.org/ .

[6] "Health-e-Child: A Grid Platform for European Paediatrics" K. Skaburskas, F. Estrella, J. Shade,
D. Manset, J. Revillard, A. Rios, A. Anjum, A. Branson, P. Bloodsworth, T. Hauer, R. McClatchey, D.
Rogulin Proceedings of the 2007 Computing in High Energy and Nuclear Physics International
Conference - CHEP07, (USA), 2007 Publication in Journal of Physics: Conference Series.

[7] MRIcro. http://www.sph.sc.edu/comd/rorden/mricro.html

[8] FMRIB Software Library. http://www.fmrib.ox.ac.uk

[9] http://people.cs.uchicago.edu/~hai/tmp/doc/siena/index.html

[10] Oliveira, M. C., Cirne, W., & de Azevedo Marques, P. M. (2007). Towards applying content-

based image retrieval in the clinical routine. Future Gener. Comput. Syst., 23 (3), 466-474.

[11] Bellotti, R., Cerello, P., Tangaro, S., Bevilacqua, V., Castellano, M., Mastronardi, G., De Carlo,

F., Bagnasco, S., Bottigli, U., Cataldo, R., Catanzariti, E., Cheran, S. C., Delogu, P., De Mitri, I., De

Nunzio, G., Fantacci, M. E., Fauci, F., Gargano, G., Golosio, B., Indovina, P. L., Lauria, A., Lopez

Torres, E., Magro, R., Masala, G. L., Massafra, R., Oliva, P., Preite Martinez, A., Quarta, M., Raso,

G., Retico, A., Sitta, M., Stumbo, S., Tata, A., Squarcia, S., Schenone, A., Molinari, E., & Canesi, B.

(2007). Distributed medical images analysis on a Grid infrastructure. Future Gener. Comput. Syst.,
23 (3), 475-484.

[12] Budura, A., Cudré-Mauroux, P., & Aberer, K. (2007). From bioinformatic web portals to

semantically integrated Data Grid networks. Future Gener. Comput. Syst., 23 (3), 485-496.

[13] glite, A lightweight middleware for grid computing. (2008). Retrieved October 20, 2008, from

http://glite.web.cern.ch/glite/ .

[14] The Globus Alliance: http://www.globus.org/

[15] "Gridifying Biomedical Applications: Experiences of the Health-e-Child Project" D. Manset, F.
Pourraz, A. Tsymbal, J. Revillard, K. Skaburskas, R. McClatchey, A. Anjum, A. Rios, M. Huber
Handbook of Research on Computational Grid Technologies for Life Sciences, Biomedicine and
Healthcare. Information Science Reference (IGI Global). Submitted - still being evaluated.

http://www.ibm.com/developerworks/library/ws-soa-design1/
http://www.health-e-child.org/
http://www.sph.sc.edu/comd/rorden/mricro.html
http://www.fmrib.ox.ac.uk/
http://people.cs.uchicago.edu/~hai/tmp/doc/siena/index.html
http://glite.web.cern.ch/glite/
http://www.globus.org/

[16] Tristan Glatard, Johan Montagnat, Xavier Pennec, David Emsellem, Diane Lingrand.
"MOTEUR: a data-intensive service-based workflow manager" Research Report I3S, number
I3S/RR-2006-07-FR, 37 pages, Sophia Antipolis, France, mar 2006

[17] Diane Lingrand, Johan Montagnat, Tristan Glatard. "Estimating the execution context for
refining submission strategies on production grids" (workshop) in Proceedings of the Assessing
Models of Networks and Distributed Computing Platforms (ASSESS / ModernBio) (CCgrid'08),
pages 753 -- 758

[18] Tristan Glatard, David Emsellem, Johan Montagnat. "Generic web service wrapper for efficient
embedding of legacy codes in service-based workflows" (workshop) in Proceedings of the Grid-
Enabling Legacy Applications and Supporting End Users Workshop (GELA'06), pages 44--53, Paris,
France, jun 2006

[19] LoNI Software Tools. http://www.loni.ucla.edu/Software/

[20] "A Formal Model-Driven Approach for Grid Application Architectures" D. Manset, H. Verjus.
Technical Report LISTIC No 07/02, University of Savoie - LISTIC, 2007.

[21] "Managing Separation of Concerns in Grid Applications Through Architectural Model
Transformations" D. Manset, H. Verjus & R. McClatchey. Lecture Notes in Computer Science Vol
4758 pp 308-310 ISBN ISBN 978-3-540-75131-1 Springer-Verlag, 2007.

http://www.loni.ucla.edu/Software/

Appendix A – SPM Pipeline Process Example

Appendix B – CIVET Pipeline Description

Detailed ist of CIVET Pipeline steps (i.e. stage name, label and parameters):

Artefact.pm: { name => "artefact",

Artefact.pm: label => "susceptability artefacts",
Artefact.pm: args => ["class_art", "0.15", "4", $skull_mask,

Classify.pm: { name => "mask_classify",
Classify.pm: label => "tissue classification",

Classify.pm: args => ["classify_clean", "-clobber", "-clean_tags", "-mask_source",

Classify.pm: { name => "pve_curvature",
Classify.pm: label => "curvature map from MRI",

Classify.pm: args => ["pve_curvature", "-clobber", $t1_input,

Classify.pm: { name => "pve",

Classify.pm: label => "partial volume estimation",

Classify.pm: args => ["pve_script", "-clobber", "-nosubcortical", @extraPVE,
Classify.pm: { name => "reclassify",

Classify.pm: label => "rebinarize PVE maps",
Classify.pm: args => ["discretize_pve", "-clobber", $pve_csf,

Classify.pm: name => "cls_volumes",

Classify.pm: label => "compute tissue volumes in native space",
Classify.pm: args => ["compute_icbm_vols", "-clobber", "-transform", $t1_tal_xfm,

Clean_Scans.pm: { name => "nuc_inorm_${type}",
Clean_Scans.pm: label => "non-uniformity correction and normalization on ${type}",

Clean_Scans.pm: args => ["nuc_inorm_stage", $input, $output, "${regModel}_mask.mnc",
Cortex_Mask.pm: { name => "cortical_masking",

Cortex_Mask.pm: label => "masking cortical tissues using cortical_surface",

Cortex_Mask.pm: args => ["cortical_mask", $cls, $cortex, $skull_mask, $brain_mask],
Cortical_Measurements.pm: { name => "thickness_${tmethod}_${tkernel}mm_left",

Cortical_Measurements.pm: label => "native thickness",
Cortical_Measurements.pm: args => ["cortical_thickness", "-${tmethod}", "-fwhm", ${tkernel},

Cortical_Measurements.pm: { name => "thickness_${tmethod}_${tkernel}mm_right",

Cortical_Measurements.pm: label => "native thickness",
Cortical_Measurements.pm: args => ["cortical_thickness", "-${tmethod}", "-fwhm", ${tkernel},

Cortical_Measurements.pm: name => "resample_left_thickness",
Cortical_Measurements.pm: label => "nonlinear resample left thickness",

Cortical_Measurements.pm: args => ["surface-resample", $surfreg_model, $left_mid_surface,
Cortical_Measurements.pm: name => "resample_right_thickness",

Cortical_Measurements.pm: label => "nonlinear resample right thickness",

Cortical_Measurements.pm: args => ["surface-resample", $surfreg_model, $right_mid_surface,
Cortical_Measurements.pm: name => "thickness_${tmethod}_${tkernel}mm",

Cortical_Measurements.pm: label => "native thickness",
Cortical_Measurements.pm: args => ["objconcat", $left_mid_surface, $right_mid_surface,

Cortical_Measurements.pm: name => "resample_full_thickness",

Cortical_Measurements.pm: label => "nonlinear resample full thickness",
Cortical_Measurements.pm: args => ["objconcat", $left_mid_surface, $right_mid_surface,

Cortical_Measurements.pm: name => "asymmetry_rms_${tmethod}_${tkernel}mm",
Cortical_Measurements.pm: label => "asymmetry cortical thickness map",

Cortical_Measurements.pm: args => ["asymmetry_cortical_thickness", "-clobber", $rsl_left_thickness,

Cortical_Measurements.pm: name => "lobe_area_left",
Cortical_Measurements.pm: label => "native lobe area",

Cortical_Measurements.pm: args => ["lobe_area", "-transform", $t1_tal_xfm, $atlas,
Cortical_Measurements.pm: name => "lobe_area_right",

Cortical_Measurements.pm: label => "native lobe area",
Cortical_Measurements.pm: args => ["lobe_area", "-transform", $t1_tal_xfm, $atlas,

Cortical_Measurements.pm: name => "lobe_area",

Cortical_Measurements.pm: label => "native lobe area",
Cortical_Measurements.pm: args => ["lobe_area", "-transform", $t1_tal_xfm, $atlas,

Cortical_Measurements.pm: name => "mean_curvature_${tkernel}mm_left",
Cortical_Measurements.pm: label => "native mean curvature",

Cortical_Measurements.pm: args => ["mean_curvature", "-fwhm", ${tkernel},

Cortical_Measurements.pm: name => "mean_curvature_${tkernel}mm_right",
Cortical_Measurements.pm: label => "native mean curvature",

Cortical_Measurements.pm: args => ["mean_curvature", "-fwhm", ${tkernel},
Cortical_Measurements.pm: name => "resample_left_mean_curvature",

Cortical_Measurements.pm: label => "nonlinear resample left mean curvature",
Cortical_Measurements.pm: args => ["surface-resample", $surfreg_model, $left_mid_surface,

Cortical_Measurements.pm: name => "resample_right_mean_curvature",

Cortical_Measurements.pm: label => "nonlinear resample right mean curvature",
Cortical_Measurements.pm: args => ["surface-resample", $surfreg_model, $right_mid_surface,

Cortical_Measurements.pm: name => "mean_curvature_${tkernel}mm",
Cortical_Measurements.pm: label => "native mean curvature",

Cortical_Measurements.pm: args => ["objconcat", $left_mid_surface, $right_mid_surface,

Cortical_Measurements.pm: name => "gyrification_index_left",

Cortical_Measurements.pm: label => "gyrification index on native gray left surface",
Cortical_Measurements.pm: args => ["gyrification_index", "-transform", $t1_tal_xfm,

Cortical_Measurements.pm: name => "gyrification_index_right",
Cortical_Measurements.pm: label => "gyrification index on native gray right surface",

Cortical_Measurements.pm: args => ["gyrification_index", "-transform", $t1_tal_xfm,

Cortical_Measurements.pm: name => "gyrification_index_full",
Cortical_Measurements.pm: label => "gyrification index on native gray full surface",

Cortical_Measurements.pm: args => ["gyrification_index", "-transform", $t1_tal_xfm,
Cortical_Measurements.pm: name => "cerebral_volume",

Cortical_Measurements.pm: label => "cerebral volume in native space",
Cortical_Measurements.pm: args => ["cerebral_volume", $final_classify, $final_callosum,

Linear_Transforms.pm: { name => "nuc_${type}_native",

Linear_Transforms.pm: label => "non-uniformity correction on native ${type}",
Linear_Transforms.pm: args => ["nuc_inorm_stage", $input, $output, "none", $nuc_dist,

$nuc_cycles, $nuc_iters],
Linear_Transforms.pm: { name => "t2_pd_coregister",

Linear_Transforms.pm: label => "co-register t2/pd to t1",

Linear_Transforms.pm: args => ["mritoself", "-clobber", "-nothreshold", "-mi", "-lsq6",
Linear_Transforms.pm: { name => "t2_pd_coregister",

Linear_Transforms.pm: label => "co-register t2/pd to t1",
Linear_Transforms.pm: args => ["mritoself", "-clobber", "-nothreshold", "-mi", "-lsq6",

Linear_Transforms.pm: { name => "skull_masking_native",
Linear_Transforms.pm: label => "masking of skull in native space",

Linear_Transforms.pm: args => ["ln", "-sf", $user_mask, $skull_mask],

Linear_Transforms.pm: { name => "skull_masking_native",
Linear_Transforms.pm: label => "masking of skull in native space",

Linear_Transforms.pm: args => ["remove_skull", "t1Only", $t1_input, $t2_input,
Linear_Transforms.pm: { name => "stx_register",

Linear_Transforms.pm: label => "compute transforms to stx space",

Linear_Transforms.pm: args => ["multispectral_stx_registration", "-nothreshold",
Linear_Transforms.pm: { name => "stx_tal_to_6",

Linear_Transforms.pm: label => "compute transforms to 6 param space from Tal.",
Linear_Transforms.pm: args => ["talto6", $t1_tal_xfm, $tal_to_6_xfm],

Linear_Transforms.pm: { name => "stx_tal_to_7",

Linear_Transforms.pm: label => "compute transforms to 7 param space from Tal",
Linear_Transforms.pm: args => ["talto7", $t1_tal_xfm, $tal_to_7_xfm],

Linear_Transforms.pm: { name => "tal_t1",
Linear_Transforms.pm: label => "resample t1 into stereotaxic space",

Linear_Transforms.pm: args => ["mincresample", "-clobber", "-transform",
Linear_Transforms.pm: { name => "tal_t2",

Linear_Transforms.pm: label => "resample t2 into stereotaxic space",

Linear_Transforms.pm: args => ["mincresample", "-clobber", "-transform",
Linear_Transforms.pm: { name => "tal_pd",

Linear_Transforms.pm: label => "resample pd into stereotaxic space",
Linear_Transforms.pm: args => ["mincresample", "-clobber", "-transform",

Non_Linear_Transforms.pm: { name => "nlfit",

Non_Linear_Transforms.pm: label => "creation of nonlinear transform",
Non_Linear_Transforms.pm: args => ["best1stepnlreg.pl", "-clobber", "-source_mask", $skull_mask,

Segment.pm: name => "nlfit_animal",
Segment.pm: label => "creation of nonlinear transform for ANIMAL segmentation",

Segment.pm: args => ["best1stepnlreg.pl", "-clobber", "-source_mask", $skull_mask,
Segment.pm: name => "segment",

Segment.pm: label => "automatic labelling",

Segment.pm: args => ["stx_segment", "-clobber", $atlas, "-modeldir", $atlasdir,
Segment.pm: name => "segment_volumes",

Segment.pm: label => "label and compute lobe volumes in native space",
Segment.pm: args => ["compute_icbm_vols", "-clobber", "-transform",

Segment.pm: name => "segment",

Segment.pm: label => "automatic labelling",

Segment.pm: args => ["lobe_segment", "-clobber", "-modeldir", $atlasdir,
Segment.pm: name => "segment_volumes",

Segment.pm: label => "label and compute lobe volumes in native space",
Segment.pm: args => ["compute_icbm_vols", "-clobber", "-transform",

Segment.pm: name => "segment_mask",

Segment.pm: label => "mask the segmentation",
Segment.pm: args => ["minccalc", "-clobber", "-expr", $seg_mask_expr,

Skull_Masking.pm: { name => "skull_removal",
Skull_Masking.pm: label => "removal of skull (in stereotaxic space)",

Skull_Masking.pm: args => ["remove_skull", $maskType, $t1_input, $t2_input,
Surface_Fit.pm: { name => "surface_classify",

Surface_Fit.pm: label => "fix the classification for surface extraction",

Surface_Fit.pm: args => ["surface_fit_classify", $cls_correct, $pve_wm, $pve_csf,
Surface_Fit.pm: { name => "create_wm_hemispheres",

Surface_Fit.pm: label => "create white matter hemispheric masks",
Surface_Fit.pm: { name => "extract_white_surface_left",

Surface_Fit.pm: label => "extract white left surface in Talairach",

Surface_Fit.pm: args => ["extract_white_surface", $wm_left_centered,
Surface_Fit.pm: { name => "extract_white_surface_right",

Surface_Fit.pm: label => "extract white right surface in Talairach",
Surface_Fit.pm: args => ["extract_white_surface", $wm_right_centered,

Surface_Fit.pm: { name => "slide_left_hemi_obj_back",
Surface_Fit.pm: label => "move left hemi obj to left",

Surface_Fit.pm: args => ["transform_objects", $white_surf_left_prelim, $slide_left_xfm,

Surface_Fit.pm: { name => "flip_right_hemi_obj_back",
Surface_Fit.pm: label => "flip right hemi obj back to resemble right side",

Surface_Fit.pm: args => ["transform_objects", $white_surf_right_prelim,
Surface_Fit.pm: { name => "slide_right_hemi_obj_back",

Surface_Fit.pm: label => "move right hemi obj to right",

Surface_Fit.pm: args => ["transform_objects", $white_surf_right_prelim_flipped, $slide_right_xfm,
Surface_Fit.pm: { name => "calibrate_left_white",

Surface_Fit.pm: label => "calibrate left WM-surface with gradient field",
Surface_Fit.pm: args => ["calibrate_white", $t1_tal_mnc, $final_classify,

Surface_Fit.pm: { name => "calibrate_right_white",

Surface_Fit.pm: label => "calibrate right WM-surface with gradient field",
Surface_Fit.pm: args => ["calibrate_white", $t1_tal_mnc, $final_classify,

Surface_Fit.pm: { name => "laplace_field",
Surface_Fit.pm: label => "create laplacian field in the cortex",

Surface_Fit.pm: args => ["make_asp_grid", $skel_csf, $left_hemi_white_calibrated,
Surface_Fit.pm: { name => "gray_surface_left",

Surface_Fit.pm: label => "expand to left pial surface in Talairach",

Surface_Fit.pm: args => ["expand_from_white", $final_classify,
Surface_Fit.pm: { name => "gray_surface_right",

Surface_Fit.pm: label => "expand to right pial surface in Talairach",
Surface_Fit.pm: args => ["expand_from_white", $final_classify,

Surface_Fit.pm: name => "mid_surface_left",

Surface_Fit.pm: label => "left mid-surface",
Surface_Fit.pm: args => ["average_surfaces", $mid_surface_left, "none", "none",

Surface_Fit.pm: name => "mid_surface_right",
Surface_Fit.pm: label => "right mid-surface",

Surface_Fit.pm: args => ["average_surfaces", $mid_surface_right, "none", "none",
Surface_Fit.pm: name => "surface_fit_error",

Surface_Fit.pm: label => "surface fit error measurement",

Surface_Fit.pm: args => ["surface_qc", $final_classify, $wm_left_centered,
Surface_Fit.pm: name => "white_surface_full",

Surface_Fit.pm: label => "white surface full",
Surface_Fit.pm: args => ["objconcat", $left_hemi_white_calibrated, $right_hemi_white_calibrated,

Surface_Fit.pm: name => "gray_surface_full",

Surface_Fit.pm: label => "gray surface full",

Surface_Fit.pm: args => ["objconcat", $gray_surface_left, $gray_surface_right,
Surface_Fit.pm: name => "mid_surface_full",

Surface_Fit.pm: label => "mid surface full",
Surface_Fit.pm: args => ["objconcat", $mid_surface_left, $mid_surface_right,

Surface_Register.pm: name => "dataterm_left_surface",

Surface_Register.pm: label => "WM left surface depth potential",
Surface_Register.pm: args => ["depth_potential", "-alpha", "0.05", "-depth_potential",

Surface_Register.pm: name => "dataterm_right_surface",
Surface_Register.pm: label => "WM right surface depth potential",

Surface_Register.pm: args => ["depth_potential", "-alpha", "0.05", "-depth_potential",
Surface_Register.pm: name => "surface_registration_left",

Surface_Register.pm: label => "register left mid-surface nonlinearly",

Surface_Register.pm: args => ["bestsurfreg.pl", "-clobber", "-min_control_mesh", "80",
Surface_Register.pm: name => "surface_registration_right",

Surface_Register.pm: label => "register right mid-surface nonlinearly",
Surface_Register.pm: args => ["bestsurfreg.pl", "-clobber", "-min_control_mesh", "80",

Surface_Register.pm: name => "surface_resample_left_white",

Surface_Register.pm: label => "resample left white surface",
Surface_Register.pm: args => ["sphere_resample_obj", "-clobber", $left_white_surface,

Surface_Register.pm: name => "surface_resample_right_white",
Surface_Register.pm: label => "resample right white surface",

Surface_Register.pm: args => ["sphere_resample_obj", "-clobber", $right_white_surface,
Surface_Register.pm: name => "surface_resample_left_gray",

Surface_Register.pm: label => "resample left gray surface",

Surface_Register.pm: args => ["sphere_resample_obj", "-clobber", $left_gray_surface,
Surface_Register.pm: name => "surface_resample_right_gray",

Surface_Register.pm: label => "resample right gray surface",
Surface_Register.pm: args => ["sphere_resample_obj", "-clobber", $right_gray_surface,

Surface_Register.pm: name => "surface_resample_left_mid",

Surface_Register.pm: label => "resample left mid surface",
Surface_Register.pm: args => ["sphere_resample_obj", "-clobber", $left_mid_surface,

Surface_Register.pm: name => "surface_resample_right_mid",
Surface_Register.pm: label => "resample right mid surface",

Surface_Register.pm: args => ["sphere_resample_obj", "-clobber", $right_mid_surface,

VBM.pm: name => "VBM_cls_masked",
VBM.pm: label => "VBM masking of classified image",

VBM.pm: args => ["mincmath", "-clobber", "-mult", $cls, $brain_mask,
VBM.pm: name => "VBM_smooth_${volumeFWHM}_csf",

VBM.pm: label => "CSF map for VBM",
VBM.pm: args => ["smooth_mask", "-clobber", "-binvalue", 1, "-fwhm",

VBM.pm: name => "VBM_smooth_${volumeFWHM}_wm",

VBM.pm: label => "WM map for VBM",
VBM.pm: args => ["smooth_mask", "-clobber", "-binvalue", 3, "-fwhm",

VBM.pm: name => "VBM_smooth_${volumeFWHM}_gm",
VBM.pm: label => "GM map for VBM",

VBM.pm: args => ["smooth_mask", "-clobber", "-binvalue", 2, "-fwhm",

VBM.pm: name => "VBM_smooth_${volumeFWHM}_wm_sym",
VBM.pm: label => "CSF symmetry map for VBM",

VBM.pm: args => ["asymmetry_map", "-clobber", $smooth_wm, $smooth_wm_sym],
VBM.pm: name => "VBM_smooth_${volumeFWHM}_gm_sym",

VBM.pm: label => "CSF symmetry map for VBM",
VBM.pm: args => ["asymmetry_map", "-clobber", $smooth_gm, $smooth_gm_sym],

VBM.pm: name => "VBM_smooth_${volumeFWHM}_csf_sym",

VBM.pm: label => "CSF symmetry map for VBM",
VBM.pm: args => ["asymmetry_map", "-clobber", $smooth_csf, $smooth_csf_sym],

Verify_Image.pm: { name => "verify_brain_mask",
Verify_Image.pm: label => "verification of native brain mask",

Verify_Image.pm: args => ["mincresample", "-clobber", "-byte", "-like", $t1_tal_final,

Verify_Image.pm: { name => "brain_mask_qc",

Verify_Image.pm: label => "native brain mask quality check",
Verify_Image.pm: args => ["brain_mask_qc", $skull_mask_native, "${lin_model}_mask.mnc",

Verify_Image.pm: { name => "verify_image_nlfit",
Verify_Image.pm: label => "verification of non-linear registration",

Verify_Image.pm: args => ["mincresample", "-clobber", "-like", $t1_tal_final,

Verify_Image.pm: { name => "classify_qc",
Verify_Image.pm: label => "classification quality check",

Verify_Image.pm: args => ["classify_qc", $cls_correct, $classify_info_file],
Verify_Image.pm: { name => "verify_image",

Verify_Image.pm: label => "create overall verification image",
Verify_Image.pm: args => [@verifyCmd, @verifyRows],

Verify_Image.pm: { name => "verify_clasp",

Verify_Image.pm: label => "create verification image for surfaces",
Verify_Image.pm: args => ["verify_clasp", $gray_surface_left, $gray_surface_right,

