

Grant agreement no. 211714

neuGRID

A GRID-BASED e-INFRASTRUCTURE FOR DATA ARCHIVING/ COMMUNICATION AND
COMPUTATIONALLY INTENSIVE APPLICATIONS IN THE MEDICAL SCIENCES

Combination of Collaborative Project and Coordination and Support Action

Objective INFRA-2007-1.2.2 - Deployment of e-Infrastructures for scientific
communities

Deliverable reference number and title: D7.1 Test-bed Installation and API Documentation

Due date of deliverable: Month 12

Actual submission date: 31st January 2009

Start date of project: February 1st 2008 Duration: 36 months

Organisation name of lead contractor for this deliverable: maat Gknowledge

Revision: Version 1

Project co-funded by the European Commission within the Seventh Framework Programme
(2007-2013)

Dissemination Level

PU Public X

PP Restricted to other programme participants (including the Commission Services)

RE Restricted to a group specified by the consortium (including the Commission
Services)

CO Confidential, only for members of the consortium (including the Commission Services)

D7.1 Test-bed installation and API documentation Page 2

Table of contents

1 Overview ... 4

2 neuGRID Grid Middleware Requirements .. 5

3 EGEE Grid Middleware .. 6

3.1 Overview .. 6

3.2 gLite Middleware Architecture ... 6

3.2.1 Access Services ... 7

3.2.2 Security Services ... 8

3.2.3 Information and Monitoring Services... 9

3.2.4 Data Management Services .. 10

3.2.5 Job Management Services.. 11

3.3 gLite Services Deployed for neuGRID .. 12

4 The neuGRID Infrastructure .. 12

4.1 Certificate Authority (CA) ... 13

4.2 Test-bed Installation: PoC infrastructure .. 13

5 Grid API Documentation ... 15

5.1 Introduction .. 15

5.2 The javaGAT APIs .. 16

5.2.1 File Operations ... 16

5.2.2 File Stream ... 16

5.2.3 Job Submissions ... 17

5.2.4 Monitoring .. 18

5.2.5 Access to Information Service .. 18

5.2.6 Conclusion .. 19

5.3 The gLite javaGAT connector .. 19

5.3.1 Completeness of the File Operations API ... 19

5.3.2 Completeness of the Job Submission API .. 20

5.3.3 Conclusion .. 21

6 Conclusion ... 22

7 Glossary .. 23

8 Bibliography .. 25

Preface

The neuGRID project (http://www.neugrid.eu) aims at developing a new user-friendly Grid-based
research e-Infrastructure enabling the European neuroscience community to carry out research
required for the pressing study of degenerative brain diseases. In neuGRID, the
collection/archiving of large amounts of imaging data will be paired with computationally intensive
data analyses. Neuroscientists will be able to identify neurodegenerative disease markers through
the analysis of 3D magnetic resonance brain images via the provision of sets of distributed medical
and Grid services.

The work presented in this deliverable contributes to the project in the following two areas:

 Installation of the neuGRID test-bed: the so-called PoC (Proof-Of-Concept) environment.
 EGEE gLite grid middleware functionality exposure within the neuGRID Platform (c.f.

glossary).

http://www.neugrid.eu/

1 Overview

This document aims to report on both the design and development of the neuGRID grid test-bed,
and the description of the Application Programming Interface (API) that is delivered to
subsequently access it. The prototype grid test-bed is based on the gLite grid middleware [1] from
the European Enabling the Grid for E-sciencEs (EGEE) project [2].

This work package (WP7) has the following major objectives:

 To evaluate and if necessary develop appropriate grid interfaces to gLite services, to
programmatically make the grid functionality available to developers,

 To undergo education and training in the use of gLite services and its APIs,
 To ensure updates and releases of gLite are available, to test them in an isolated

environment prior to deploying those in the production infrastructure,

 To liaise with EGEE and enrich the grid middleware requirements from new ones identified
in neuGRID.

WP7 builds upon the project requirements elicitation conducted by WP9. As “D9.1 User
Requirements Specification (USR) document first release” is due at Month 14, the following
anticipates the finalisation of the tes-bed.

To support the neuGRID software development cycles, trial deployments, evaluation and
experimentation with the neuGRID-specific gLite middleware configurations, two sub-
infrastructures PoC (Proof-of-Concept)1 and PROD (Production) were identified. The main goal of
the gLite deployment was to expose the grid middleware functionality within the neuGRID platform
(see the Glossary section). We decided to build our own PoC infrastructure in order to better
understand how the gLite components interact with each other and also to train the WP8 team
members for the deployment and delivery of the neuGRID PROD infrastructure. This work also
allowed us to deploy and test latest gLite releases and other software components which were
needed to support the neuGRID development with project-specific functionality. It was thus
decided to mimic as much as possible real PROD sites in the test-bed.

A set of APIs acting as a grid interface to gLite services for the neuGRID platform and client
applications was investigated, with the aim of delivering a service-based access.

The deliverable is organised as follows. First, we present briefly the high level requirements of the
neuGRID project that helped making decisions on what to deploy within the PoC infrastructure and
to set plans for later deployments in the PROD environment. We then provide an overview of the
gLite grid middleware functionality. The neuGRID grid infrastructure - PoC (architecture, current
status, etc) is described in the section 4Erreur ! Source du renvoi introuvable.. The Grid API
documentation is then described in the section 5. Finally, we summarise the work conducted
within the first 12 months in WP7.

To improve readers’ understanding of the document and technical terms, we provide
“Bibliography” and “Glossary” sections where links to more extensive project specific or technical
information can be found as well as acronyms used throughout the text.

1 The PoC infrastructure is neuGRID’s test-bed.

D7.1 Test-bed installation and API documentation Page 5

2 neuGRID Grid Middleware Requirements

gLite is used for building distributed federated infrastructures for Virtual Organizations (VO)2
bringing together different kinds of geographically distributed resources allowing (among other
things) for sharing and exchanging information in a secure way. It is a broad and complex set of
software services which in turn comprises a number of components. To actually build and deploy
the grid-based infrastructural solution in WP7, the neuGRID infrastructure architects and neuGRID
developers had to understand the requirements of the project end-users and software
development groups. The requirements thus far gathered span multiple aspects ranging from
security and privacy constraints, to networking and hardware needs and to the structure of the
project's virtual organization itself. For that purpose, the project had to and still is conducting a
series of requirements elicitation meetings with respective end-users groups. At the outset of this
process key documents will be delivered including (but not limited to):

 "Users Requirements Specifications – first release" document [3] Month 14;
 "Users Requirements Specifications – final release" document [4] Month 26.

Realization of the project goals (i.e. to deploy e-infrastructures for European neuro-science
community, to collect/archive a large amounts of imaging data, computationally intensive data
analyses, etc.), requires an infrastructure that is highly dependable and reliable. Physicians may
require guarantees that the system is always available and that the processes that integrate data
are reliable, even in the case of failures. Moreover, the infrastructure may have to allow for the
transparent access to distributed data, to provide a high degree of scalability, and to efficiently
schedule access to computationally intensive services by applying sophisticated load-balancing
strategies.

WP9, for the sake of accompanying developments, already compiled a set of requirements and
circulated internal documents giving early access to the information. These requirements were
kept in mind while designing and creating the neuGRID infrastructure. According to these
requirements, the system shall provide a distributed computing infrastructure for storing imaging
data and results of computationally intensive data analysis. The system uses gLite for virtualizing
distributed computing resources and enabling secure access to sensitive medical data. The grid
middleware shall provide secure, coordinated and controlled access to the distributed computing
resources. The grid middleware shall enable to create/destroy/modify Virtual Organizations to
allow co-working between physicians of the neuro-science community. It shall be possible to
manage the grid infrastructure allowing adding, removing and modifying nodes on the grid.

As can be noticed, such requirements are high level and quite general, thus inviting WP7 partners
to build a flexible enough infrastructure which can be tuned in the near future to align with WP9
conclusions.

2 A Virtual Organization is a collection of individuals and institutions that is defined according to a set of

resource sharing rules [12]

D7.1 Test-bed installation and API documentation Page 6

3 EGEE Grid Middleware

3.1 Overview

Grid Middleware refers to the security, resource management, data access, instrumentation,
policy, accounting, and other services required for applications, users, and resource providers to
operate effectively in a grid environment. Middleware acts as a sort of 'glue' which binds these
services together. Grid middleware is built by layered interacting packages.

 A grid middleware is an internet based system that needs efficient and reliable
communication and is a blend of high performance systems and high throughput
computing,

 A grid middleware is data aware and all data access and replications decisions are
based onbase bound at least for the following functions: grid topology management
user access and certification dataset locations and replicas resource definition and
dynamical management performance and user bookkeeping,

 A grid middleware is bound to efficient matching and scheduling algorithms to find
best available resources for the task execution and resource brokering,

 A grid middleware depends on accurate clock performances to synchronize nodes and
correctly handle task and job scheduling.

The gLite distribution [1] is an integrated set of components designed to enable resource sharing.
In other words, this is a middleware for building a grid. It is developed by the EGEE European
project. gLite distributions pull together contributions from many other projects/partners, including
LCG and VDT. The distribution model is to construct different services ('node-types') from these
components and then to ensure simple installation and configuration on the chosen platforms (i.e.
currently Scientific Linux version 4).

The gLite Middleware is a quite complex framework which follows a Service Oriented Architecture
(SOA) to facilitate interoperability among grid services and to allow easier compliance with
upcoming standards. This architecture has the advantage to not be bound to specific
implementations, and services are expected to work together but can also be used independently.

3.2 gLite Middleware Architecture

This section will give a short overview of the components currently available in the EGEE gLite
middleware. Figure 3-1 below depicts the gLite high level services, which can thematically be
grouped into five service groups: Access Services, Information and Monitoring Services, Job
Management Services, Data Management Services and Security Related Services. For more
detailed descriptions refer to [5].

D7.1 Test-bed installation and API documentation Page 7

Figure 3-1: The gLite high level architecture

The following subsections briefly present gLite middleware components grouped by service types.
Only major gLite components considered to be relevant to the scope of the neuGird project are
listed and described.

3.2.1 Access Services

The aim of the Access Services is to give either command line or programmatic level access to the
whole stack of publicly available gLite services. As an example, Figure 3-2 below presents
schematic view of gLite Data Management APIs and Command Line Interfaces (CLIs).

Figure 3-2: gLite Data Management APIs and CLIs

User Interface (UI) is gLite's separate deployment component which belongs to Access Services
group. When installed on a server or desktop computer it allows users or user level applications to
access the functionalities of the grid services like VOMS, WMS, File Catalog, SE, CE, IS etc. It
provides a set of CLIs and different programming languages APIs.

D7.1 Test-bed installation and API documentation Page 8

3.2.2 Security Services

Security Services encompass the Authentication, Authorization, and Auditing services which enable the

identification of entities of different nature (i.e. users, systems, and services), allow or deny access to
services and resources, and provide information for post-mortem analysis of security related events. To carry

out the tasks of Authentication and Authorization, gLite uses the Public Key Infrastructure (PKI) x509

technology using Certificate Authorities (CAs) as trusted third parties and MyProxy [6] extended by VOMS. It
also provides functionality for data confidentiality and a dynamic connectivity service (i.e. means for a site to

control network access patterns of applications and Grid services utilizing its resources).

VOMS: The Virtual Organisation Membership Service (VOMS) is a service to manage authorization
information in a VO scope. The VOMS system should be used to include VO membership and any
related authorization information in a user’s proxy certificate. These proxies will be said to have
VOMS extensions. The user gives the voms-proxy-init command instead of grid-proxy-init, and a
VOMS server will be contacted to check the user’s certificate and create a proxy certificate with
VOMS information included. By using that certificate, the VO of a user will be present in every
action that he will perform.

Hydra: is a gLite implementation of secure key storage. Symmetric encryption keys for encrypted
files are stored in a specific set of servers called Hydra. Hydra provides controlled access to these
keys (through certificate DN and VOMS attributes based ACLs) and secured communication to the
requester. Hydra uses Shamir’s secret-sharing scheme for splitting keys into 'n' fragments stored in
different places. Only 'm<n' fragments are needed to reconstruct a complete key. However,
owning less than 'm' key fragments, does not give any information on the complete key. Thus, the
system is both resistant to attacks (at least 'm' key stores need to be compromised for an attacker
to be able to reconstruct the key) and reliable (the disconnection of a limited number of servers
does not prevent the key reconstruction).

Encrypted storage: Users access Hydra through the Encrypted storage C library which provides
on-the-fly; block level data encryption and decryption. The component provides command line
utilities for managing the keys in the Hydra key store. There are also command-line utilities, which
integrate the library with the gLite I/O clients, thus one can retrieve/decrypt or store/encrypt files
transparently.

Grid Policy BOX (G-PBox): is a policy framework designed to operate on Grid environments. G-
PBox is a tool for VO and site administrators. For VO administrators it allows writing policies for
internal VO groups/roles defined in the VO VOMS server and to manage policies received from site
G-PBoxes. In turn, by site administrators G-PBox is used write policies for internal sites users and
to manage policies received from VO G-PBoxes. G-PBox is queried by resources like CEs and SEs
and services (as WMS) also not owned by VOs or Sites. Simply speaking, it helps in creation and
application of authentication policies between grid services - for example, between VO WMSes and
site CEs and SEs.

MyProxy (PX)3: On grids, users authenticate themselves using temporary credentials called
proxy certificates, which contain also the corresponding private key. Proxy certificates do not
represent a significant security risk only if they are reasonably short-lived (by default, a dozen
hours). For longer jobs, PX plays a role of online credential repository [6]. For such long running
jobs a proxy renewal system is used, consisting of a Proxy Renewal Service (PRS) on the RB
and a PX server on a dedicated host. A PX stores long-lived user proxies (with a lifetime of several
days, usually) which it uses to generate, on request of the PRS, short-lived proxies for jobs whose
proxies are about to expire.

3 in gLite this service comes with VDT [7] distribution

D7.1 Test-bed installation and API documentation Page 9

3.2.3 Information and Monitoring Services

 Information and Monitoring Services (IMS) provide a mechanism to publish and
consume information and to use it for monitoring purposes. The information and monitoring
system can be used directly to publish, for example, information concerning the resources on
the Grid. More specialized services, such as the Job Monitoring Service and Network
Performance Monitoring services can be built on top. Major components of gLite IMS are: BDII,
R-GMA and Service Discovery.

 BDII: The Information System (IS) provides information about the status of Grid services and
available resources. Job and data management services publish their status through Grid
Resource Information Server (GRIS). GRIS runs on every service node and is implemented
using OpenLDAP, an open source implementation of the Lightweight Directory Access Protocol
(LDAP). Ever grid site also runs one Grid Index Information Server (GIIS). The GIIS queries the
service GRISes on the site and acts as a cache storing information about all available site
services. Finally, the information from GIISes is collected by Berkeley Database Information
Index (BDII). The BDII (also called top BDII: tBDII) queries the GIISes (sometimes also called
site BDII: sBDII) and acts as a cache storing information about all available Grid services in its
database. Figure 3-3 shows this flow of information. Users and programs interested in status of
the Grid usually query the top level BDII as it contains information about all the services that
are available.

Figure 3-3: gLite Information System hierarchy

 R-GMA is a relational implementation of the Grid Monitoring Architecture defined by GGF. It is
information and monitoring system for use both by the Grid middleware and by applications.
Producer and consumer services are available at every site and currently make use of a single
registry and schema service. R-GMA is currently being used by job management services,
operational tools and by users for monitoring their applications.

 Service Discovery is a facility for locating suitable services offered to both end users and
other services. It is implemented as a client library front-end to one or more information
systems. The information systems are made available by a plug-in mechanism. It is intended to
be lightweight and simple to use. Currently it supports BDII, R-GMA and XML files as back-
ends. Service Discovery is used by Workload and Data Management components. This
component is also available on UI for users do discover services currently available on an

D7.1 Test-bed installation and API documentation Page 10

infrastructure.

 Grid services provide information about their status in a form defined by the Grid Laboratory
for a Uniform Environment (GLUE) schema. GLUE schema is the result of an ad-hoc
international collaboration. It is maintained in two forms: one for BDII and one for R-GMA. The
information is logically the same but one follows a hierarchical schema (for BDII) and the other
is relational (for R-GMA).

3.2.4 Data Management Services

Architecturally the Data Management Services of the gLite middleware stack consist of three major
components: Data Storage, Metadata and Catalog Services and Data Scheduling.

3.2.4.1 Data Storage

 Grid File Transfer Protocol (GridFTP) is a high-performance, secure, reliable data transfer
protocol optimized for high-bandwidth wide-area networks. It is based on the Internet FTP
protocol, and it implements extensions for high-performance operation. GridFTP uses basic
Grid security on both control (command) and data channels. Other features include multiple
data channels for parallel transfers, partial file transfers, third-party (direct server-to-server)
transfers, reusable data channels, and command pipelining. GridFTP is used as a primary data
transfer interface to Storage Elements.

 Storage Resource Managers (SRM) is a service somewhat similar to the cluster batch
system but instead of managing processors and jobs it manages requests for storage space
and files. The storage space managed can be disk space, tape space or a combination of the
two. There is a number of SRM implementations for disk storage management that are widely
deployed (DPM, dCache, CASTOR).

 Disk Pool Manager (DPM) is a recommended solution for lightweight deployment of smaller
sites because it is easy to install and requires very low maintenance effort. It features full
implementation of SRM. Bigger sites usually choose dCache because of robustness, scalability
and advanced features. CERN Advanced STORage (CASTOR) is an implementation used by
sites that have both disk and tape storage.

3.2.4.2 Metadata and Catalog Services

 LCG File Catalog (LFC) offers a hierarchical view of files to users, with a UNIX-like client
interface. The LFC provides Logical File Name (LFN) to Storage URL (SURL) mappings and
authorization for file access. The LFNs are aliases created by a user to refer to actual data.
Simple metadata can be associated to them. The authorization is performed using UNIX-style
permissions, POSIX Access Control Lists (ACL) and VOMS support. The LFC uses a client-server
model with a proprietary protocol. LFC server communicates with a database (either Oracle or
MySQL), where all the data is stored. LFC catalogue also exposes a Data Location Interface
(DLI) - a web service used by applications and Resource Brokers. Provided with a LFN, the DLI
returns the actual location of the file replicas.

3.2.4.3 Data Scheduling

 File Transfer service (FTS) is a reliable, low-level data movement service for transferring
files between Storage Elements. It also provides features for administration and monitoring
these transfers. The FTS exposes an interface to submit asynchronous bulk requests and
performs the transfers using either third-party GridFTP or SRM Copy.

D7.1 Test-bed installation and API documentation Page 11

3.2.5 Job Management Services

Three major components constituting the Job Management Services group are Computing
Element, Workload Management and Accounting. Although primarily related to the job
management services; accounting is a special case as it will eventually take into account not only
computing, but also storage and network resources.

 Computing Element (CE) is the service representing a computing resource. It provides a
virtualization of the computing resource localized at a site (typically a batch queue of a cluster
but also supercomputers or even single workstations). It provides information about the
underlying resource and offers a common interface to submit and manage jobs on the
resource. CE includes: a Grid Gate (GG) - Gatekeeper for CE based on Globus - which acts as a
generic interface to the cluster; LRMS (sometimes called batch system); the cluster itself - a
collection of Worker Nodes (WN) or just one multiprocessor WN, the node(s) where the jobs
are run. There are two GG implementations in gLite 3.0: the LCG-CE and the gLite-CE; sites
can choose what to install. The GG is responsible for accepting jobs and dispatching them for
execution on the WN(s) via the LRMS.
Another type of CE developed in EGEE project is CREAM (Computing Resource Execution And
Management). It is a simple, lightweight service that implements all the operations required at
the CE level. Its interface is defined using WSDL. The service is compliant with the existing BES
standard. CREAM can be used by the WMS, via the ICE component (see next description of
WMS), or by a generic client, e.g. an end-user willing to directly submit jobs to a CREAM CE. A
C++ command line interface and Java clients are available for this purpose.
The interface of gLite-CE and CREAM with the underlying LRMS is implemented via BLAH. All
the resource management systems supported by BLAH are automatically supported by the CEs.
In gLite 3.0 the supported LRMS types are OpenPBS, LSF, Maui/Torque, BQS and Condor.

 Workload Management System (WMS) is a Grid level meta-scheduler that schedules jobs
on the available CEs according to user preferences and several policies. It also keeps track of
the jobs it manages in a consistent way. The core component of the WMS is the Workload
Manager (WM), whose purpose is to accept and satisfy requests for job management coming
from its clients (i.e., computational job submission). In particular the meaning of the
submission request is to pass the responsibility of the job to the WM. The WM will then pass
the job to an appropriate Computing Element for execution, taking into account the
requirements and the preferences expressed in the job description. The decision of which
resource should be used is the outcome of a matchmaking process between submission
requests and available resources. The Resource Broker (RB) or Matchmaker as WMS
component offers support to the WM in taking the above mentioned decision. It provides a
matchmaking service based on a given user's job description – find a resource that best match
the request. A WMS instance interacts with several other services. Tracking job lifetime relies
on the Logging and Bookkeeping Service. Information on service availability, resource status
and data localization is gathered from appropriate sources, such as Service Discovery, LFC,
BDII, RGMA. Security-related aspects are addressed interacting with VOMS, Proxy Renewal and
G-PBox.
Another important component of the gLite WMS is the Interface to CREAM Environment (ICE).
It provides the connection between the gLite WMS and the CREAM CE. ICE, running in the
gLite WMS node along with the other processes of the gLite WMS, receives job submissions
and other job management requests from the WM component of the WMS and then invokes
the appropriate CREAM methods to perform the requested operation.

D7.1 Test-bed installation and API documentation Page 12

 Logging and Bookkeeping Service (LB): The primary purpose of the Logging and
Bookkeeping service (LB) is tracking Grid jobs as they are processed by various Grid
middleware components. It collects and stores in a database the job status information
supplied by the different components of the WMS system. The collection is done by LB local-
loggers, which run on the RB and on the CE, while the LB server, which normally runs on the
RB, saves the collected information in the database. The database can be queried by the user
from the UI, and by RB services. The information that is gathered in LB is used to inform Grid
users on the job state. This information is also useful for example for debugging of user jobs.

3.3 gLite Services Deployed for neuGRID

Based on initially gathered requirements and from the technical partners experience, a list of gLite
services which have to be installed for the neuGRID project was determined.

 For the security area, a VOMS service will be needed to manage the neuGRID community.
Also, a MyProxy service might be needed to handle long running jobs. Then, for data
management, a LFC service might be needed (might not be used). Also, a DPM service will be
needed to physically store the imaging data. For the gLite information system, we need to
install a tBDII and sBDII services. Finally, for the computational power part of neuGRID,
CE/WN and WMS/LB services will be installed in the coming months as progress is made on
the gridification model implementation (see D10.1 for more details). All these services will be
dispatched in the GCC and in the different DACS sites.

4 The neuGRID Infrastructure

Requirements for deployment of neuGRID infrastructure were overviewed in section 2 of the
deliverable. Based on the above high level requirements and availability, functionality and
properties of the services comprising EGEE Grid middleware stack architecture and deployment
strategy of the neuGRID infrastructure were proposed.

To support neuGRID software development cycles, experimentation with neuGRID specific gLite
middleware deployments, developers’ and infrastructure administrators’ trainings, 2 sub-
infrastructures were identified:

 PoC (Proof-of-Concept)
o evaluation of new gLite releases
o experimentation with gLite deployment strategies
o development and early testing of neuGRID services
o training of neuGRID developers and infrastructure administrators
o Pipelines and client applications development and integration

 PROD (Production) – stable and secure environment for end-users
o Platform deployed and operational for the neuGRID community usage.

PoC (WP7 responsibility), PROD (WP8 responsibility) are two distinct non-overlapping sub-
infrastructures forming the neuGRID network. The Figure 4-1 schematically represents them and
also shows Grid middleware evaluation/validation/deployment and software development cycles on
the neuGRID infrastructure.

D7.1 Test-bed installation and API documentation Page 13

Figure 4-1: neuGRID infrastructure (schematic view).
Grid middleware validation/deployment and software development cycles.

In the next section the POC infrastructure will be presented and you must have in mind that it will
be mimicked in the PROD infrastructure.

4.1 Certificate Authority (CA)

On grids public key infrastructure (PKI) arrangement is used for binding electronic cryptographic
keys (key-pair) with respective user identity. In this scheme Certification Authority (CA) has a role
of trusted third party and of high importance. It plays a vital role on the infrastructure while not
directly being a part of the grid infrastructure.

The neuGRID project considered two possibilities of having cryptographic certificates:

 buying them from widely accepted CA like for example VeriSign [8],
 setting up an instance of CA belonging to neuGRID project only.

In order to be more flexible, it was decided that, in the PoC infrastructure, a specific neuGRID CA
would be used. This CA is provided by MAAT (based on Open Source free software OpenCA).
However, in the PROD infrastructure, all eu-gridpma CAs are meant to be accepted.

4.2 Test-bed Installation: PoC infrastructure

In the section 3.3, a list of gLite services that will be install in the neuGRID infrastructure was
provided. Here is a recap of this list:

 VOMS
 MyProxy
 LFC
 WMS/LB
 tBDII
 sBDII
 DPM
 CE/VN

The 5 first services (VOMS, MyProxy, LFC, tBDII and WMS/LB) will be part of the GCC as core
services of the neuGrid infrastructure. Indeed, they can be seen as gLite core services under which
all other neuGRID services can be added / mixed. The VOMS server can be shared for the 2 sub-
infrastructures (PoC, PROD) as it is able to deal with sub groups. This is also the case for MyProxy
as it’s only a proxy certificate repository into which each user can dump their own. But concerning
LFC, tBDII and WMS/LB, there will have one instance of each service per sub-infrastructure to
avoid all the potential resource sharing problems and to ease user access rights management.
Concerning the other services (sBDII, DPM, CE/WN), they will be installed on each DACS to
provide them with data storage and computing power capability. This approach is considered to be

D7.1 Test-bed installation and API documentation Page 14

a standard practice for gLite middleware deployment.

In the following figure (Figure 4-2), you can find a representation that emphasizes the gLite
services that are deployed inside of the PoC, as of today.

As it is described in the project description of work document, “LEVEL 0” represents the
“infrastructure ground truth” level and “LEVEL 1” represents the Data Archiving and Computing
Sites (DACS). The number of WN will depend on the available hardware at each DACS. The more
hardware will be available, the more WNs will be installed to increase the DACS computing power
capability.

In the context of the PoC deployment, two partners are members of the PoC infrastructure:

 MAAT which owns the GCC and one DACS,
 PRODEMA which own another DACS.

The current development status is the following for the GCC:

HOSTNAME/IP SERVICES

ng-maat-server2.maat-g.com VOMS

ng-maat-server4.maat-g.com LFC + tBDII

ng-maat-server7.maat-g.com MyProxy

ng-maat-server9.maat-g.com WMS + LB

openca.ng-maat-server1.maat-g.com CA

LEVEL 0
GCC :

VOMS MyProxy

LFC WMS/LB tBDII

LEVEL 1

DACS 2 :

CE/WN sBDII DPM

DACS 1 :

CE/WN sBDII DPM

CA

Figure 4-2: gLite services repartition inside POC

D7.1 Test-bed installation and API documentation Page 15

For the DACS mimicked by MAAT, the deployment is the following:

 HOSTNAME/IP SERVICES

ng-maat-server3.maat-g.com DPM + sBDII

ng-maat-server8.maat-g.com CE

ng-maat-server10.maat-g.com WN

ng-maat-server11.maat-g.com WN

ng-maat-server12.maat-g.com WN

5 Grid API Documentation

5.1 Introduction

The gLite middleware is quite powerful in terms of functionality and one of the big challenges is to
expose its functionality in a more user friendly manner. Natively, the gLite middleware provides all
the necessary APIs in C/C++. Also it provides few java/Python APIs for some services. Usually,
gLite is used through what is called a "gLite User Interface" (gLite-UI) [9]: this is a suite of clients
(binaries) and APIs (mostly C/C++) that users and applications can use to access the gLite
services.

In the context of the neuGRID project, most of the developments will be done in Java. By
consequence, the use of the gLite-UI is feasible through for instance the use of the
java.lang.Runtime.exec() java function [10].

The java.lang.Runtime.exec() method is able to run external programs within Java program and,
so, would allow us to execute all the grid command line interfaces (CLIs). Never the less, this
implementation would have two main disadvantages:

The first disadvantage is that this implementation requires a lot of memory. Indeed, each call to
this kind of function will emulate a new environment into which the CLIs will be executed.

The second disadvantage is that this implementation forbids interactions between the caller of the
method and the underlying process. Indeed, once an external program is lunched using this
java.lang.Runtime.exec() method, you cannot interact anymore with it and if a CLI, for instance,
ask for some confirmation before executing concretely the command, the program is stuck and will
never finished.

Hopefully, since a couple of month, a new possibility to interact with the gLite middleware is now
available through a well known APIs named Java Grid Application Toolkit (javaGAT) [11]. JavaGAT
is a set of generic and flexible APIs for accessing grid services. It implements a plug-in architecture
which allows the community to extend it to be able to access multiple grid middleware. Until the
last release (2.0.3), javaGAT supported, GridLab, Globus, Zorilla, etc... but not gLite. This is now
the case even if the support is not complete.

D7.1 Test-bed installation and API documentation Page 16

One of the big advantages of the javaGAT solution is that it is open source, which implies that it
can be easily extended if needed. Also, the adoption of such abstraction layer could be interesting
at some point for the neuGRID project interoperability. Indeed, once JavaGAT is integrated in your
program, this later is able to deal with all the middleware that are supported by javaGAT.

5.2 The javaGAT APIs

The javaGAT APIs are divided in five main areas:

 File operations: allow file manipulation like copy, delete, move and create operations.
 File stream operations: allow to read or to write file content.
 Job submissions: allow to run, stop, cancel, etc. different job within the underlying Grid

infrastructures.

 Monitoring: allow to monitor the previously launched jobs.
 Access to information service: allow to discover the available resources of the

underlying Grid infrastructure.

In the next sections, we will describe the five areas more in detailed.

5.2.1 File Operations

One of the most important objects for this functionality is the org.gridlab.gat.io.File one. This
object is an abstract representation of a physical file and is used to perform operations on an
entire file. The file can be either local or remote. Thanks to this object, a lot of functionality is
available. The most important ones are:

 canRead() - Detect whether a file or a directory can be read or not.
 canWrite() - Detect whether a file or a directory can be written or not.

 copy(URI loc) - Copy the file to a specific destination (URI).
 createNewFile() - Create the file.
 delete() - Delete the file.
 exists() - Test whether the file exists or not.
 isDirectory() - Test if the file object represent actually a directory.
 isFile() - Test if the file object represent actually a file.
 lastModified() - Test when the file was modified for the last time.
 length() - return the size of the file.
 listFiles() - List the files that are inside the provided directory.
 mkdir() - Create the directory.
 mkdirs() - Create the directory and all the parents if they don't exist.

 move(URI location) - Move the file to a specific location (URI).
 recursivelyDeleteDirectory() - Delete the directory and all his content.
 renameTo(File dest) - Rename the file.

5.2.2 File Stream

In this area, two classes are important: org.gridlab.gat.io.FileInputStream and
org.gridlab.gat.io.FileOutputStream. The first one is mainly used to read the content of a file and
the second one is used to write the content of a file. Those both interfaces can mange local or
remote files.

The main important functions of the org.gridlab.gat.io.FileInputStream object are:

D7.1 Test-bed installation and API documentation Page 17

 available() - Returns the number of bytes that can be read from this file input stream
without blocking.

 close() - Close the connection to the file.
 mark(int arg0) - Mark the current position in the input stream. A subsequent call to

the reset method repositions this stream at the last marked position so that
subsequent reads re-read the same bytes.

 read() - Reads a byte of data from this input stream.
 read(byte[] b) - Reads up to b.length bytes of data from this input stream into an

array of byte.
 read(byte[] b, int off, int len) - Reads up to len bytes of data from this input stream

into an array of bytes.
 reset() - Repositions this stream to the position at the time the mark method was last

called on this input stream.

 skip(long n) - Skips over and discards n bytes of data from the input stream.

For the org.gridlab.gat.io.FileOutputStream object those are the most important methods:

 close() - Close the connection to the file.

 flush() - Flushes this output stream and forces any buffered output bytes to be written
out.

 write(byte[] b) - Writes b.length bytes from the specified byte array to this output
stream.

 write(byte[] b, int off, int len) - Writes len bytes from the specified byte array starting
at offset off to this output stream.

 write(int b) - Writes the specified byte to this output stream.

5.2.3 Job Submissions

For job submission, the most interesting objects are org.gridlab.gat.resources.ResourceBroker and
org.gridlab.gat.resources.Job.

An instance of the ResourceBroker class is used to submit jobs or to reserve resources for a future
job and the Job object is here to monitor the job status.

The most relevant functions for the ResourceBroker object in our case are:

 findResources(ResourceDescription resourceDescription) - This method attempts to
find one or more matching hardware resources which correspond to a given resource
description.

 reserveResource(ResourceDescription resourceDescription, TimePeriod timePeriod) -
This method attempts to reserve the specified resource for the specified time period.

 reserveResource(Resource resource, TimePeriod timePeriod) - This method attempts
to reserve the specified resource for the specified time period.

 submitJob(JobDescription description) - This operation takes a JobDescription, and
submits the specified job to some underlying resource management or allocation
system.

 submitJob(JobDescription[] descriptions) - This operation takes an array of
JobDescriptions, and submits the specified jobs to some underlying resource
management or allocation system.

 submitJob(JobDescription[] descriptions, MetricListener listener, String
metricDefinitionName) - This operation takes an array of JobDescriptions, and submits
the specified jobs to some underlying resource management or allocation system.

 submitJob(JobDescription description, MetricListener listener, String

D7.1 Test-bed installation and API documentation Page 18

metricDefinitionName) - This operation takes a JobDescription, and submits the
specified job to some underlying resource management or allocation system.

Concerning the Job object, the relevant functions are:

 getExitStatus() - Returns the exit status of a job.
 getInfo() - This method returns information about the associated job.
 getJobID() - Returns the job id, a globally unique identifier for the physical job

corresponding to this instance.

 getState() - This method returns the state of the Job
 stop() - Stops the associated physical job.

5.2.4 Monitoring

The most important objects of this functionality are org.gridlab.gat.monitoring.Metric,
org.gridlab.gat.monitoring.MetricEvent, org.gridlab.gat.monitoring.MetricListener and
org.gridlab.gat.monitoring.Monitorable. A Metric object represents a measurable quantity within a
monitoring system and is used to specify a measurable quantity. A MetricEvent object represents
the measured value of a quantity measured by a monitoring system and is used to specify to
interested parties that a measurement of a quantity corresponding to a Metric has taken place.
The MetricListener object is implemented by classes which wish to be informed of MetricEvents
and is used to inform instances of such classes of MetricEvent's. The Monitorable object is
implemented by classes which wish to be monitored for MetricEvents and is used to inform
interested parties of such events.

For the Metric object the most interesting functions are:

 Metric(MetricDefinition definition, Map<String,Object> metricParameters) -
Constructor: Constructs a Metric instance from the passed Metric name and concrete
values for the Metric parameters.

 Metric(MetricDefinition definition, Map<String,Object> metricParameters, long
frequency) - Constructor: Constructs a Metric instance from the passed Metric name
and concrete values for the Metric parameters.

 getDefinition() - Gets the MetricDefinition.
 getFrequency() - Gets the measurement frequency in milliseconds.
 getMetricParameterByName(String name) - Gets the Metric parameter value

associated with the passed Metric parameter name.

 getMetricParameters() - Gets the Metric parameters associated with this Metric.

For the MetricEvent object, the available functions are:

 getEventTime() - This method returns the number of milliseconds after January 1,
1970, 00:00:00 GMT when the event happened.

 getMetric() - This method returns an instance of the Metric to which this MetricEvent
corresponds.

 getValue() - This method returns the value corresponding to this MetricEvent.

The 2 other objects (MetricListener and Monitorable) must be instantiated when needed.

5.2.5 Access to Information Service

The most important object of this functionality is the org.gridlab.gat.advert.AdvertService one. The

D7.1 Test-bed installation and API documentation Page 19

AdvertService allows Advertisable (An interface which is realized by any class which wishes to get
advertised in the advert service.) instances to get published to and queried in an advert directory.
Such an advert directory is a meta data directory with an hierarchical namespace attached.

Important functions of the AdvertService object are:

 add(Advertisable advert, MetaData metaData, String path) - Add an Advertisable
instance and related meta data to the AdvertService, at path.

 delete(String path) - Remove an Advertisable instance and related meta data from the
AdvertService, at path.

 find(MetaData metaData) - Query the AdvertService for entries matching the specified
set of meta data in the MetaData.

 getAdvertisable(String path) - Gets an Advertisable instance from the given path.
 getMetaData(String path) - Gets the MetaData of an Advertisable instance from the

given path.

5.2.6 Conclusion

The complete javaGAT documentation in a javadoc format can be found on this web page:
http://www.cs.vu.nl/ibis/javadoc/javagat/index.html. As we said previously, the gLite connector is
really new and a lot of functionality is currently missing. For the neuGRID project, the most
important areas that need to be covered by the connector are "File operations" and "Job
submissions". The other area could be useful at some point but not mandatory as the neuGRID
infrastructure will mainly insert/move files and execute jobs into the gLite grid middleware.

In the following section, we will describe what is currently available using the gLite connector.

5.3 The gLite javaGAT connector

At time of writing (January 2009), in the last version of javaGAT that can be found in there source
code repository, the following areas are covered by the gLite adaptor:

 File operations,

 Job submissions

As it was said previously, those are the two areas that are needed for the neuGRID project.
Unfortunately, everything is not yet available in each of these areas. In the next section, a state of
the completeness of these areas will be done.

5.3.1 Completeness of the File Operations API

The gLite connector currently contains two objects for the file operations:

 GliteGuidFileAdaptor: This object is able to handle the files which have Uniform
Resource Identifier (URI) like "guid://".

 GliteSrmFileAdaptor: This object is able to handle the files which have URI like
"srm://".

Basically, with these two adaptors, we are able to interact with the gLite Logical File Catalogue
(LFC), the gLite information system (tBDII) and the gLite Storage Element (SRM). In the next
table, you can see the currently implemented functionality for each adaptor:

http://www.cs.vu.nl/ibis/javadoc/javagat/index.html

D7.1 Test-bed installation and API documentation Page 20

20avaGat API: File Adaptors Implementation

canRead() GliteGuidFileAdaptor NO

 GliteSrmFileAdaptor NO

canWrite() GliteGuidFileAdaptor NO

 GliteSrmFileAdaptor NO

copy(URI loc) GliteGuidFileAdaptor DONE

 GliteSrmFileAdaptor DONE

createNewFile() GliteGuidFileAdaptor DONE

 GliteSrmFileAdaptor NO

exists() GliteGuidFileAdaptor NO

 GliteSrmFileAdaptor NO

delete() GliteGuidFileAdaptor DONE

 GliteSrmFileAdaptor DONE

isDirectory() GliteGuidFileAdaptor NO

 GliteSrmFileAdaptor NO

isFile() GliteGuidFileAdaptor NO

 GliteSrmFileAdaptor NO

lastModified() GliteGuidFileAdaptor NO

 GliteSrmFileAdaptor NO

length() GliteGuidFileAdaptor NO

 GliteSrmFileAdaptor NO

listFiles() GliteGuidFileAdaptor NO

 GliteSrmFileAdaptor NO

mkdir() GliteGuidFileAdaptor NO

 GliteSrmFileAdaptor NO

mkdirs() GliteGuidFileAdaptor NO

 GliteSrmFileAdaptor NO

move(URI location) GliteGuidFileAdaptor NO

 GliteSrmFileAdaptor NO

recursivelyDeleteDirectory() GliteGuidFileAdaptor NO

 GliteSrmFileAdaptor NO

renameTo(File dest) GliteGuidFileAdaptor NO

 GliteSrmFileAdaptor NO

As you can see, a lot of functionality is missing. Never the less, most of the missing functionality is
trivial to do and will be done soon.

Moreover, currently, there is no object which is able to deal with "lfn://" URI. This kind of adaptor
will be needed if developers need to organize the grid files inside the LFC. If we discover that this
functionality becomes needed, it will be developed (the work is already in progress).

5.3.2 Completeness of the Job Submission API

For this area, the gLite connector provides one implementation of the ResourceBroker API and one
for the Job one:

 GliteResourceBrokerAdaptor
 GliteJob

As it was done in the previous section, the following table shows the completeness of the

D7.1 Test-bed installation and API documentation Page 21

GliteResourceBrokerAdaptor object:

javaGAT API: ResourceBroker Implementation:

findResources(ResourceDescription resourceDescription) DONE

reserveResource(ResourceDescription resourceDescription, TimePeriod
timePeriod)

DONE

reserveResource(Resource resource, TimePeriod timePeriod) DONE

submitJob(JobDescription description) NO

submitJob(JobDescription[] descriptions) NO

submitJob(JobDescription[] descriptions, MetricListener listener, String
metricDefinitionName)

NO

submitJob(JobDescription description, MetricListener listener, String
metricDefinitionName)

DONE

As you can see, this functionality is now well exposed. The only restriction is that you cannot
submit multiple jobs on the same time. This restriction is not really important as you can always do
that in the application source code really easily.

Bellow, the same table for the Job object:

javaGAT API: Job Implementation: GliteJob

getExitStatus() NO

getInfo() DONE

getJobID() DONE

getState() DONE

stop() DONE

Here it is the same; most of the functionality is implemented.

5.3.3 Conclusion

As you can see, the gLite javaGAT connector is already well advanced for the job submission area
and a lot of stuff remains for the data management area. The WP7 team already started to
complete it for the neuGRID project needs and will continue to do it until that the neuGRID
requirements will be complete.

D7.1 Test-bed installation and API documentation Page 22

6 Conclusion

The work presented in this deliverable contributes to the project in the following two areas:

 Building of neuGRID Grid-based test-bed: the PoC infrastructure.
 Exposing the gLite functionalities within the neuGRID Platform

To actually build and deploy the Grid-based infrastructural solution in WP7, the neuGRID
infrastructure architects should have been clearly aware of the project users’ requirements. As the
document “Users Requirements Specifications” [3] was not yet released, internal meetings were
done with the WP9 team. Based on the result of these meetings and on the experience that
already have some partners involve in this work package, a list of gLite middleware components to
install was created. Based on that, a standard and flexible architecture was put in place.

Moreover, different manners of exposing the gLite functionality to the whole platform were
studied. It was decided to expose it through the very well know javaGAT API which aim to abstract
users from the different Grid APIs that can exists and to expose everything under a set of
coordinated, generic and flexible APIs. JavaGAT has the advantage of been open source, which
mean that it can be easily enhanced for the neuGRID project needs if necessary. Also, in longer
term, this would allow the neuGRID community to interact with other grid infrastructures.

The conclusions above demonstrate that WP7 team has successfully followed the WP7 program of
work. As it was promised in the description of work, a set of functionalities were investigated and
deployed.

Future plans are mainly focused on two tasks. First, maintenance of the POC infrastructure has to
be done. This include to update it with the very latest gLite components versions and to provide
feedback to EGEE if needed. Second, the JavaGAT gLite connector will have to be completed to at
least cover the neuGRID needs.

D7.1 Test-bed installation and API documentation Page 23

7 Glossary

API Application Program Interface

BDII Berkeley Database Information Index

BES Basic Execution Services

BLAH Batch Local ASCII Helper Protocol

CA Certification Authority

CASTOR CERN Advanced STORage Manager

CE Computing Element

CEMon Computing Element MONitor

CLI Command Line Interface

CREAM Computing Resource Execution And Management

DGAS Distributed Grid Accounting System

DLI Data Location Interface

DN Distinguished Name

DPM Disk Pool Manager

EGEE Enabling Grids for E-sciencE

FTS File Transfer Service

GFAL Grid File Access Library

GG Grid Gate

GIIS Grid Index Information Server

gLite EGEE Grid middleware stack

GLUE Grid Laboratory for a Uniform Environment

GMA Grid Monitoring Architecture

GRIS Grid Resource Information Server

ICE Interface to CREAM Environment

IS Information System (grid-level)

LSF Local Sharing Facility

LB Logging and Bookkeeping

LFN Logical File Name

MDS Monitoring and Discovery Service

neuGRID
platform

neuGRID services + gLite middleware

PBS Portable Batch System

PKI Public Key Infrastructure

POC neuGRID Proof Of Concept sub-infrastructure – neuGRID test-bed

PROD neuGRID Production sub-infrastructure

R-GMA Relational Grid Monitoring Architecture

D7.1 Test-bed installation and API documentation Page 24

RFIO Remote File Input/Output

RB Resource Broker

SAM Service Availability Monitoring framework

SD Service Discovery

SE Storage Element

SL Scientific Linux

SL4 Scientific Linux 4

SRM Storage Resource Manager

SURL Storage URL

SWIG Simplified Wrapper and Interface Generator

TURL Transport URL

UI User Interface

VDT Virtual Data Toolkit

VO Virtual Organization

VOMS Virtual Organization Membership Service

WN Worker Node

WMS Workload Management System

D7.1 Test-bed installation and API documentation Page 25

8 Bibliography

[1] gLite Grid middleware website - http://www.glite.org/

[2] EGEE website - http://www.eu-egee.org/

[3] neuGRID WP9 deliverable D9.1 - "Users Requirements Specifications (URS) document first
release" – due month 14 of the project

[4] neuGRID WP9 deliverable D9.2 - "Users Requirements Specifications (URS) document final
release" – due month 26 of the project

[5] EGEE-II-MJRA1.2 - "Functional description of grid components" -
https://edms.cern.ch/document/736259/2

[6] MyProxy - http://grid.ncsa.uiuc.edu/myproxy/

[7] VDT, Virtual Data Toolkit - http://vdt.cs.wisc.edu/

[8] VeriSign - http://www.verisign.com

[9] The gLite-UI - http://glite.web.cern.ch/glite/packages/R3.1/deployment/glite-UI/glite-UI.asp

[10] java.lang.Runtime online javadoc:

http://java.sun.com/j2se/1.5.0/docs/api/java/lang/Runtime.html

[11] JavaGAT - http://www.cs.vu.nl/ibis/javagat.html

[12] I. Foster, C. Kesselman and S. Tuecke, The Anatomy of the Grid, International Journal of
High performance Computing Applications, 15, 3, 2001

http://www.glite.org/
http://www.eu-egee.org/
https://edms.cern.ch/document/736259/2
http://grid.ncsa.uiuc.edu/myproxy/
http://vdt.cs.wisc.edu/
http://www.verisign.com/
http://glite.web.cern.ch/glite/packages/R3.1/deployment/glite-UI/glite-UI.asp
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/Runtime.html
http://www.cs.vu.nl/ibis/javagat.html

