=T33 :
m
O

neu

e-infrastructure

Grant agreement no. 211714

neuGRID

A GRID-BASED e INFRASTRUCTURE FOR DATA ARCHIVING/
COMMUNICATION AND COMPUTATIONALLY INTENSIVE APPLICATIONS IN
THE MEDICAL SCIENCES

Combination of Collaborative Project and Coordination and Support Action

Objective INFRA-2007-1.2.2 - Deployment of elnfrastructures for scientific
communities

Deliverablereference number and title: D6.2Interim service prototype report

Due date of deliverable: Month 24

Actual submission date: §t.lJanuary 2010
Start date of project: February 2008 Duration: 36 months

Organisation name of lead contractor for this dghble: P3 University of the West of
England, Bristol UK

Revision: Version 1.0 — First Draft release for lRewx

Project co-funded by the European Commission withinSeventh Framework Programme (2007-
2013)

Dissemination L evel

PU Public X

PP Restricted to other programme participants (incilgdghe Commission Services)

RE Restricted to a group specified by the consortiuntlding the Commission

co Confidential, only for members of the consortiumc{uding the Commission
Services)

Table of Contents

Purpose and Intended Audience of this DOCUMENL............covvviiiiiiiiiiiei e, 3

EXECULIVE SUMIMAIY... .ottt e e e e e e e e e e e e e et e et e e enneeeessbsenan e as 4
1. THE PIPEIINE SEIVICEuuuuiiiie it it eeeeeee ettt rrren e e e e e e e e e e aaeeeeees 7
2. THe PrOVENANCE SEIVICEuuuuuini s ettt e e e e eeeaa e s e e e e e e e e aeaaees 17
3. THe GlIUBING SEIVICE ...coeeeiiiiiiicie ettt sreee e s e e e e e e e e e aaaeeeees 27
4. ThE QUEIYING SEIVICE ...uuuuiiiiie e e e eeeeeeec e e e e e e e e e et et e ae bbb s e e e e e e e e e eeaaas 35
5. The POrtal SEIVICEcooiiiiiiiit ettt e e e e e e e e e e e eeeas 40
6. The ANONYMISALION SEIVICEccooiiiiiieeeeeee e ee e e ee e eeeeeeeeee 47
7. The WaAY FOIWANT........uuuiieiiiieie e e e eeeeee it s s s e e e e e e e e e e e e eeeeeaeesssnnnnnssssannnnaneeeeas 53

Document Revision History

Comments Subjects Dates
\W hat ToWhom involved
Author to circulate the 1st draft to the wh AA 1/1/10
1st Draft Whole C ti
consortium |~onsoraum
ist Draft - 1st review: Reviews due back to the Aut| Alex [1/10/10
Author |Author to implement comments +
comments .
David
Author to circulate the 2nd draft to PN AA 1/13/10
Znd draft PMT Technical Supervisor and Area leaders
2nd draft Author 2nd review:PMT's reviews due back to PMT |1/17/10
comments Author. Author to implement comments
Final Draft PC Author_ to send Final draft to the Proj AA 1/25/10
Coordinator
Final Draft Coordinator's review due back to the Authar GbF 7Mm0Q
Author
comments
Deliverable CB Coordinator’'s review -Author sends fin AA 1/29/10
draft to GbF
Deliverable CommissiorSubmission - Final changes made ¢ CB 1/30/10
submitted to the Commission

Purpose and I ntended Audience of this Document

D6.2 The interim service prototype report formsublic deliverable and documents
the progress achieved on the services implementa&tidVP6. In this workpackage
(WP), a set of generalised services is being dedigimmd implemented that will help
the users in their analysi8VP leaders, technical users, neuGRID developarsject
managers and EC reviewerse the intended recipients of this documa&hich may be
revisited as and when key recommendations pres@mtéeé document evolve, due to
the ongoing research and development process iwdHegackage. To a lesser extent,
since the recommendations and future plans in the&kpackage may impact the
decisions made on the potential use and explaitaifahe project outcomes, neuro-
scientists and prospective users (e.g. Pharmaetutaustries) as well as internal and
external users of the project activities, are alsticipated as potential readers of this
deliverable.

Executive Summary

The aim of the neuGRID Project is to provide a #gendly grid-based e-
infrastructure plus a set of generalised infrastnec services that will enable the
European neuroscience community to carry out rebetrat is necessary for the
study of degenerative brain diseases. The WP6 wackage, the provision of
Distributed Medical Services, is responsible fop@ying general purpose analysis
services to the users of the project. The provissbrthese generalised medical
services will enable grid technologies to be apbiie this and a number of other
medical domains. The services will provide the ifdity that is necessary for
interfacing with existing medical systems and vehable the reuse of packaged
services that exploit grid functionality. This woplackage will gradually provide an
Application Programming Interface (API) which isdependent both of the
application domain and of the underlying Grid istracture.

In order to achieve these objectives, a requiresnanalysis process was carried out
to identify the group of services that are suitdbleaddressing the neuGRID project
objectives (as reported in D9.2 from WP9). The megments process also helped in
identifying the functionality that these servicdwusld provide for the users of the
system. During this activity a design philosophydtove the services design process
was produced. The design philosophy delivered aofeajuidelines that services
should follow to ensure their execution and eventgemposition into biomedical
applications. The WP6 deliverable document in yleautlined the design philosophy
that is being followed during the construction leé¢ distributed medical services. The
deliverable also described a design for the sesepfices that will constitute the
distributed medical services layer. The design@raduation process was led by user
requirements, which have been separately elicitaf9 deliverables.

Once the project requirements had been elabortitedhext step was to map these
requirements against possible components and fgéhtise that should be used. The
reasons for building these components as servaes Iheen presented in detail in the
design philosophy section in year 1 deliverable 1ID& he services will exist as
autonomous and loosely coupled entities that caexXaeuted independently. Each
service will address requirements that cannot bedled by any other single
component or service. Collectively and in cooperativith each other, services will
support the user analysis process and thereforeedal functional neuGRID system.

A group of services has been identified that igheei middleware nor application

specific. These generalised services can be usadywgpplication and should run on
any grid middleware. We have discussed the majopoments and requirements that
each of these generalised services should addsegsllaas a more detailed design for
each of these services in the year 1 deliverabld.Dihis also included architectural
considerations and the selection of the most deitstbucture for each of the services.
The services design also considered the technalbgimices which were available

and justified why specific technologies have beefeded. The design included
individual service components, API's and interfatted will be provided to enable

interaction with other services and applications.

In year 2, efforts were made to finalise the desigh the services whose initial
specifications were submitted in the year 1 deéibér and that can best address the
user requirements. At the same time, it was ensthiatl the service designs are
consistent with the design principles that werespnéed in the year 1 deliverable. A

significant effort has been invested in year 2ntplement the services. Each of these
services has an implementation roadmap that cl@giglgs with project commitments
and deliverable submission deadlines. The prog@ssieved on the service
implementation is reported in this year 2 delivégali he following set of activities
was performed in year 2 on the design and impleatient fronts:

* The design of each service was finalised. Thisgieprocess not only glued
together various components, it also ensured theset components and
services can be extended as and when requiredadt also ensured that
minimum dependencies existed between componentssamices and that
they were sufficiently scalable to cope with futdemands in loads. Particular
care was taken to make these services as gendralspossible and vendor
and middleware lock-ins were avoided.

» Suitable interfaces were crafted to provide actesthese services. It was
ensured that these interfaces promoted interopityal@ind ease-of-use.
Standard approaches were employed in designing timsrfaces with the
intention that services should follow generallyesgt standards to the greatest
possible extent in order to make them widely explde.

* This deliverable document highlights the progrésd has been achieved on
each of the services. This document also touches thpe important features
that each of the services offers as well as teahtimitations that were faced
in implementing the proposed services designs. SEmeice descriptions also
include the work that will be carried out in therthyear of the project. The
details have also been provided regarding the Gseterfaces, technologies
and about the implementation as well as the depéoyranvironment used in
these services. Any missing functionality is ddsedi and a roadmap for
implementing and delivering the remaining functidyaas also been set out.

A summary on the status of the services is predentehe following section. The
detailed services reports can be found in the msjgesections in this document.

a. Pipeline ServiceThe role of the Pipeline Service is to enableubers
to create and design workflows in a user-friendighion in a workflow authoring
environment of their choice. The current implemgataof the Pipeline Service
consists of the following implemented features:Aljully defined web service
interface of the Pipeline Service; 2) An implementeanslation component that
supports translations both for the LONI Pipeliaed translation to JDL for gLite
Submission; 3) An enactor that uses an extendeté-gidaptor for the Glueing
Service for submission to the grid.

b. Glueing ServiceAll the generalised services in neuGRID will acces
distributed resources through a Glueing serviceas Hervice will provide an
abstraction layer through which users can accetssatal other resources without
lock-in to a particular middleware. The current lempentation of the service
encapsulates the following functionality: 1) JolbBussion; 2) File Management
(reading, writing, directory listing, getting filgize); 3) Job Monitoring; 4) User
Authentication and 5) LORIS Integration.

C. Provenance Servicefhe Provenance Service will capture, store and
perform analysis on the data for improved decismaking. The following
features are available as a consequence of the T@RISadoption as the
provenance management tool: 1) Provenance capturnom pipelines; 2)

Provenance data storage in files; 3) Workflow lidfgcle management and 4)
Mechanism to store user specific provenance.

d. Querying ServiceThe Querying Service will be a generalised service
that can query and browse data that is storedfiile ar relational database or in
other Grid databases. Due to the dependence ormaoge service and LORIS
API’s, the querying service is not yet available ése, however, the following
progress has been made: 1) The service desigmadizéd; 2) Technology
evaluations are complete and 3) Interfaces have thened.

e. Portal Service:The Portal Service will be a point of entry to the
system and all other services will be accessedugfirdhis service. This service
will also hide the low-level service interfaces antplementation details from
common users. The following components are avalablthe portal service: 1)
The Single Sign-On (SSO) system based on the Cehtihentication Server
(CAS); 2) The dashboard (menu) and 3) The neuGRAER2B6/WSRP 2.0
compliant portal.

f. Anonymisation ServiceBiomedical data needs to be anonymised and
should be shared after ethical and legal clearaFfoe.anonymisation service will
ensure this before the users can access biomethtalfor their analysis. The
following components are available in the anonytiosa service: 1) The
pseudonymisation library; 2) The PseudonymisatioebVservice and 3.) The
Pseudonymisation applet/stand alone application.

The deliverable document concludes with a roadnmapthe third year which is
presented in the “way forward” section.

As discussed in the design document, user requitesnmeay evolve and new sets of
features may need to be added. Consequently, set@isigns and the functionality
offered may also evolve and provision has been madie designs to address
potential future changes in functionality. The desiand implementation will
therefore be periodically reviewed and any changed future suggestions and
recommendations will be considered. It is anti@dathat most of the essential
requirements that have been identified in the usguirements analysis will be
implemented before the project concludes by the adngear 3. Service libraries as
well as documentation will be released as and vawailable according to the project
plan and will be integrated with the rest of theject deliverables. The services will
also be demonstrated to the potential user commeanéind their feedback will be
used as a vehicle for service testing, improvemamtsproduction quality releases.

1. The Pipeline Service

1.1 Purpose and Introduction

The neuGRID generalised medical services layeuded numerous components that
facilitate the execution of a neuroimaging pipelarea grid infrastructure. One of the
central services enabling this is the Pipeline 8ervrhe functionality of the Pipeline
Service is mandated by specific requirements frol9WThe role of the Pipeline
Service is to enable scientists to create and dewsigrkflows in a user-friendly
fashion in any workflow authoring environment oéithchoice. The Pipeline Service
will also plan and distribute the pipeline overradgand finally coordinate with the
Provenance Service to enable users to retrievegaary the results of the execution.
The purpose of this section is to update the staklehs about the implementation
progress of the Pipeline Service and highlightessand current limitations that will
be addressed in future versions.

1.2 Architecture

The components of the Pipeline Service are outlinddigure 1. The interaction starts
with the authoring of a pipeline, which the userntgato execute on the Grid.
Authoring can be done in numerous tools. LONI Ripels a popular neuroimaging
pipeline authoring environment that is supportedh®yPipeline Service. The Pipeline
Service implements flexible interfaces for integrgt any suitable authoring

environment (described in more detail in sectid).3.

Workflow Submission

Workflow Submission 0 the Grid

Workflow Authoring
Environments

Pipeline Service

A | ON|[Pipéline
3 L)
' Kepler ~_ ™",

wm

Workflow
Translation

Workflow ||

Glueing Service
Enactment

p—

Your Scierice. Enabled.
. Sy

Invoke results and Provenance —
information retrieval

% Provenance Service
Querying of

Results

Workflow Complete

Querying Interface Execution

Results*and Provenance
Information retrieval

Figure 1: Pipeline Service Architecture

After authoring the pipeline, the user invokessitdbmission to the Pipeline Service.
Upon submission several things occur: first thdaxed pipeline that is represented in
a native format to the authoring environment isisgtated into a common objected-
oriented workflow model. A draft specification dfi$ model was presented in the
year 1 deliverable document D6.1. This represaiaihas been expanded to
accommodate further use cases and support othekflowor paradigms such as
service-based workflows. A full specification of ethobject-oriented workflow
language is presented in section 3.2. After workftranslation, the workflow is
planned for the execution. In workflow planning tidestract user specified workflow

is transformed into a concrete executable workfldhe workflow structure may also
be modified for more efficient execution in thedyri

Workflow enactment is the final stage in the PipeliService. The Pipeline Service
submits the planned workflow to the Grid via theu@hg Service. The Glueing
Service abstracts all interactions between WP6 iG&=svand the underlying Grid
middleware. In the case of the Pipeline Servicee thnctionality that enables
submission of a workflow to the grid and workflonomtoring capabilities are used
primarily. Once a workflow has been executed, tljgelihe Service invokes the
Provenance Service to initiate the retrieval of gnevenance information and the
output of the workflow. The user can then query tésults through the Querying
Service.

1.3 Current Implementation

The current implementation of the Pipeline Servimansists of the following
implemented features.

» A fully defined webservice interface of the Pipeli&ervice.

* Implemented translation component that supportsstaéions for both LONI
Pipeline, and translation to JDL for gLite Subnossi

» Enactor that uses an extended gLite-adaptor for Gheeing Service for
submission to the grid.

Each implemented feature will be described in dlétdhe subsequent sections.

1.3.1 Web Service Interface

According to the WP6 design philosophy the PipelBervice has been designed
around a Service Oriented Architecture (SOA). Aliprmary draft Web Service
interface has been presented in the Year 1 WP&medeliverable D6.1. This
interface has been enhanced in response to thbaeledrom project partners. The
webservice binding enables clients to interact il Pipeline Service and perform
various functions such as submission of workflowacking progress and various
control functions. There are essentially four typd#smethods supported in the
Pipeline Service. Submission methods expose fumality that enables a user to
submit a workflow. Workflow Control methods expo&enctionality that enable
interaction with currently executing workflows. Th&peline Service Initialisation
method is invoked to initialise a session with Bhpeline Service. Finally the Pipeline
Service Internal methods are methods that enabteraction with internal
components of the Pipeline Service. Specific patarseare required for various
Pipeline Service methods. The following four partere are generally used
SessionID, Workflow, UserCredentiadsd WorkflowID. The SessionlDdenotes the
identifier used internally by the Pipeline Serviceidentity a specific user session.
The Workflow argument denotes the actual workflow submitted iy tiser. The
userCredentialsargument denotes a credential provided by the tesétentify the
user. TheWorkflowID argument used in the Workflow Control methods is th
middleware-specific unique identifier for the wddkf.

The Pipeline Service APl methods are as followstal®e of each method are
provided in subsequent sections.

Submission Methods
* batch_submit(SessionID, Workflow)
* int_submit(SessionID, Workflow)

Workflow Control Methods
» cancelWorkflow(SessionID, userCredentials), cancekflow(WorkflowID)
» getStatus(SessionID, userCredentials), getStatusfivaID)
» getWorkflowOutput(SessionID,userCredentials),
getWorkflowOutput(WorflowID)

Pipeline Service I nitialization Method
* initSession(UserCredentials)

Pipeline Service I nternal Methods
» getWorkflow(SessionID, userCredentials), getWowki&essionID)
» translateWorkflow(workflowType, sessionID)
» planWorkflow(planner, Workflow, sessionID)
e submitToGS(workflow, sessionID)

1.3.1.1 Submission M ethods

Two submission functions are provided as part ef Rtipeline Service. One submit
function, batch_submit,is provided for submission of workflows which anet
interactively monitored. Whilent_submitis provided for interactively monitored
workflows, such as those created from an authoengironment e.g. the LONI
Pipeline. Both functions take sessionlD which maps a particular user to the
submitted workflow and a workflow specificationpsovided as a SOAP attachment.

1. batch_submit(SessionID, WorkfloMethod

The batch_submifunction is provided for submitting workflows whicre compute

and data intensive. These workflows will take a stderable amount of time to
execute, hence users may not track the progresiseoivorkflow interactively. To

optimize the execution of these compute and datnsive workflows the Pipeline
Service will use the workflow planner. The PipeliService will also manage the
transfer of the output and logging information bé tworkflow to the Provenance
store for later querying and analysis.

The sequence chart is shown in Figure 2.

Steps 1-3: Users first create a new session which uniquedptifies the workflow the
user is submitting. A new session is created by itiSession(UserCredentials)
function. TheUserCredentialsargument is provided by the User and will map a
specific user to the submitted workfloWserCredentialswill also be the primary
means of authentication in order to authorize dskePipeline Service.

Steps 4-6: The PS Controller is a component of the PipelineviSe that will
orchestrate all activities required on behalf afrasThe PS Controller will export the
Pipeline Service API via a webservice binding. TRipeline Service will support
numerous workflow formats. The Translation Companienprovided in order to
convert supported formats into a common standanthdt The components within
the Pipeline Service will operate on the standarchét.

€2}

User Glueing Service
PS Controller Translation Comp \—PWar'm_e‘r—I PS Llueing sefvice
tore

1: Realsier Se5f|nn > | , 2: Store SessionID ‘ |
T T 3
3: Return Session|D ‘ i ‘

4: Submit Warkhnw

5: Translate Workflow

6: Return Workflow

7. Invoke Workflow Planner ‘
|

8: Return Planned Workflow

9: Submit Planned Werkflow |

T
w =
10: Return Workflow \D‘ |
‘ 11:Store Workflow 1D ‘ ‘
T |
s |

Figure 2: Sequence Diagram frbmitFunction

Steps 7-8. After the workflow has been converted into a comnformat, the PS
controller forwards the workflow to the Planner >imization.

Steps 9-10: After receiving the planned workflow from the Phem, the PS Controller
submits the workflow to the Glueing Service viaeanbedded Glueing Service client.
The need for a planner and the role it will playoptimizing the workflows has been
discussed in D6.1. The Glueing Service will takee tworkflow and through
appropriate adaptors convert it into a middlewarecdic format e.g. JDL in gLite.
The Glueing Service will return a middleware specNorkflow identifier which will
be used to track the progress of the workflow atdave output upon completion.

2. int_submit(SessionlID, WorkfloMethod

Theint_submitfunction is provided for submitting workflows thdu@UI authoring
and submission environments such as the LONI RipelGUI authoring and
submission environments provide mechanisms forsuserauthor workflows, to
submit them and to track progress interactivelye D continuous monitoring of the
workflow there are some differences in the funaidg of this method compared to
batch submit GUI environments will be primarily used to creat@wv workflows or
customize existing ones and execute them to deterntheir behaviour. GUI
environments will also be used to debug existingkifows. The workflow author
will determine the workflow correctness by checkihg output of each stage of the
workflow execution, and in case of errors checkltdgys to determine errors. For this
reason the workflow planner is not used in itite submitfunction. The Workflow
Planner, due to its optimization strategies, magnge the workflow structure and
may eliminate the execution of certain tasks baeeddata availability. This
optimization may disrupt the workflow authoring pess. To author a new workflow
or correct existing ones, the workflow that is axed on a Grid, should be identical
to the workflow that was authored. Once the womkfie deemed to be complete and
frozen, then workflow optimization can be appliedough thesubmitfunction.

The sequence chart is shown in Figure 3.

10

1.
2.
3.

’J_‘Aulhcr Workflow L Add tasks and

User Workflow Authoring and PS Controller Translation PS Glueing Service
Submission Environment Comp Store
I

Ldependendes interactively

1: Invoke Submission
of Workflow 2: Register Session 3: Store SessionID

|
|
|
|
|
I)
|
|

4: Return SessionID |
: Y

6: Translate Workflow

5: Submit Workflow

7: Return Translated Workflows

t
8: Submit Workflows

9: Wnrkﬂnw\DinfarmaLan

1
11: Workflow D information | 10: Store Workflow 1D >{;|

Monitor Workflow 12: Retrieve Monitoring Information | 12: Retrieve Monil‘nring \nfm‘malinn ‘
! : | 11

|
T T e "
14: Workflow Complete 13: Send Monitoring Information 17: Retr;eve Results1 3: Send Ma‘nlmrlng In!‘nrmatlsn ‘
15: Retrieve Results 16: Retrieve lResuIts h : >\:_‘
L :
T U
18: Retrieve Results ACK 18: Retrieve Results ACK

Figure 3: Sequence Diagram from_submitFunction

Steps 1-4: Users first author a workflow in the environmentlanvoke submission.
The Workflow authoring environment will first re¢gs a newsessionlDfrom the
Pipeline Service.

Steps 5-11: The authoring environment submits the workflowttie Pipeline Service
with the int_submitfunction. The Pipeline Service at first translates workflow
definition into a common format and then submits workflow without planning to
the Glueing Service. The Glueing Service forwatd® ithe appropriate middleware
adaptor and returns a middleware specific workfidentifier. This identifier is stored
within the Pipeline Service and returned to théarihg environment.

Steps 12-14: The authoring environment tracks the progresei@fworkflow through
the getStatus(WorkflowIDijnethod. ThegetStatusnethod will invoke the appropriate
SAGA monitoring functions, which will in turn invekthe middleware specific job
status mechanism e.g. gLite-wms-job-status andegkinhs-job-get-logging-info in
gLite. Once the job is complete the authoring eswinent will quit monitoring.

Step 15-19: Once the job is complete, users can specify aeséovwhich the output
of the workflow is to be transferred. This requissiorwarded to the Glueing Service

which then uses middleware specific mechanism daaster workflow output e.g.
gLite-wms-job-output in gLite.

1.3.1.2 Workflow Control Methods

The Pipeline Service provides numerous workflowtadrmethods which enable the
following.

Cancel a workflow
Get status of a running workflow
Retrieve output of a workflow

11

One thing to note about these functions is that wadants of the methods are
provided. One class of functions takes WerkflowID as argument, while the other
takes both thesessionIDand theuserCredentialsas argument. ThésessionID,
userCredentials)functions are designed to be used when users hesePipeline
Service in multiple sessions. For instance usensstdbmit workflows through the
batch_submitfunction, and after some time may want to deteentime status of a
workflow and retrieve the output once it has beempgleted. In this scenario the
users will providesessionlDof the workflow session angserCredentialsargument.
The Pipeline Service will retrieve thveorkflowID form the PS store and contact the
Glueing Service to retrieve the appropriate infaiora TheworkflowlD functions are
designed to be used in a single continuous session.

1.3.1.3 Pipeline Service I nitialization M ethod

The initSessionmethod is the basic method used to initiate a session with the
Pipeline Service. The identifier returned is a ueidD.

1.3.1.4 Pipeline Service Internal Methods

The Pipeline Service Internal Functions are a defuactions which are used
internally by the Pipeline Service, but an extenvabservice binding is provided in
order to give the Pipeline Service an open architec For instance
translateWorkflow planWorkflowand submitToGSare functions which are used by
the PS controller to orchestrate the workflow tfatien, planning and submission of
a Workflow respectively. These functions are exdaseenable simplified and open
usage of the Pipeline Service. For instance, ier Unas an appropriately planned
workflow there is no need for the user to use theh or interactive submit functions
rather the user can directly call tsebmitToGSfunction to submit the workflow
directly to the Glueing Service. Similarly if thesar wants to determine how a
workflow will be planned, the user can call fanWorkflowfunction and review the
planned workflow.

Another design consideration for exposing thesectians is that developers can
customize the way they use the Pipeline Servicdeyeloper can create his own PS
client which invokes the Translation Component beées a third party workflow
planner and then submits the output of the platm#re Glueing Service.

1.3.2 Translation Component

The Pipeline Service is designed to support matpbrkflow specification formats.
For this purpose an object-oriented workflow AP$ h@en designed. The objective of
the API is to enable the translation of the mosniemn workflow formats to a
common format which the Pipeline Service componeatsinteract with. A draft of
the API was presented in Year 1 deliverable docurdénl. However in response to
partner feedback the APl has been extended to supyeb Service workflows as
well. The Web Service workflow extension as of igeaihcomplete and the task APl is
being developed and implemented. This section paxeas follows. The workflow
API is depicted in Figure 4 and described subseatjueDynamic instantiation of
appropriate translators during the runtime of thpelhe Service is essential to
support such an API. Hence the mechanism useckiRitbeline Service is described
in section 3.2.2. This section also describes hew manslators can be created for the
Pipeline Service.

12

1.3.2.1 Objected Oriented Workflow Representation

The Translation component implements an APl whitows the translation of

various workflow specification formats to a comnfonmat. The component will be
designed to convert a workflow description to a own format used within the
Pipeline Service. The following is a descriptiohtbbe classes of the Translation
component. The class diagram is shown in Figure 6.

1. Activity Abstract Class
This class represents all the entities that arepuo&ated inside a Workflow.

Activity Class
activitylD: String
protected Activity(String ActivitylD)

getActivitylD()
L |
1 Workflow
v Activites: Vector<Activity>
Dependencies: Vector<Dependency=>
WobService Ginss AddActivity(Activity)
Task TO BE DEFINED = A e

Executable : Sing Task(] emoveAcllvufy{Actnﬂtle]
Logging : Vector<String> Getter/Setter of each attribute will geltTaskID(Activity)
Input : Vector<String= be provided generateXML()
Output: Vector<String> AddSuccessor(referenceActivityl D,
arcnnectulre' String successorActivityD)
Job Type: String RemoveSuccessor(referenceActivitylD,successor
task_arguments: Vector<String> ActivitylD)
task_regs: Vector<String= Y -
priority: integer AddPredecessor(referenceActivitylD,
Task() successorActivity|D)
setExecutable(String), getExecutable() RemovePredecessor(referenceActivity|D,
setlogging(Vector<String=), getLogging() successorActivity|D)
setinput({Vector<String=), getinput()
setOutput{Vector<String=), getOutput()
setArchitecture(String), getArchitecture() 1
setJobType(String), getlobType()
setArguments(Vector<String=), . q
getArguments()
sefTaskRegs(Vector<String=), getTaskRegs()
setPriority(integer), getPriority() Dependency

TasklD : Integer
Dependencies: Vector<Integers

Figure 4: Class Diagram of the Translation API

2.WebService Class (Extends Activity)
This Class contains everything that is neededpoesent a WebService
3. Task Class (Extends Activity)

The Task Class contains properties that definexasutable task in a Workflow. It
contains properties that represent Executablerimdtion, Logging Information, Input
Data information, Output Data Information, Archiié® specific information, Job
Type, Task Arguments, OS environment, Task Requergs) and Priority of the job.

It is important to note that not all workflow spications record all of these
properties. However, for LONI Workflows, some prdpes are recorded that are not
represented in this class. For this the Task dasse inherited and extended in a sub
class. This has been done for the LONI Adaptor.

4. \Workflow Class

The Workflow class is the class which defines theucsure of the workflow
representation within the Translation componente TWorkflow class contains
properties that enable the declaration ¥pendencies and the activities in the
workflow.

5. Dependency Class

The Dependency class defines a structure for deglaa dependency. The basic
properties in this class include an ActivitylD pesty which defines the ID of the task

13

concerned. The other property is the dependencai@sey which is a vector of
ActivitylD, which enumerates all IDs of activitiehich have a dependency
relationship with the activity.

1.3.2.2 Dynamic I nstantiation of Translators

Once a workflow has been submitted to the Pipehiervice, thdipelineControlleris
instantiated to manage the entire life-cycle of therkflow within the Pipeline
Service. As depicted in figure 1, the first stageaosubmitted workflow is the
workflow translation. As can be seen in Figureh® Translator is invoked by calling
the methodtranslate with parametersessioniDand workflowType As previously
mentioned theessionlDidentifies the user's session. MerkflowTypdadentifies the
format of the workflow. The Pipeline Service maintaan internal storage where it
stores users sessions and the corresponding wawskfiabmitted. The internal storage
is also used to store translated workflows as waslithe XML marshalled object-
oriented representation of a workflow. In the UMttiaity diagrams presented in
figure 2 and 3, this storage is termedR StoreAs can be seen in figure 5, the
PSStoreWrapperclass encapsulates interaction with the storageh& current
implementation.

PipelineController
1

translatelsession|DworkflowTypel <<interface>>

<<interface>>
outputAdaptorSPl

InputAdaptorSPl

Instantiation depends on workflowType 1

Translator i
I

<arealizes s ! 1 !
’ 1 1 1 <<realizes !

I

I

1

i
:
I
I
I
I
I
I

% uk::ac:uwe:neugrid::services::pipeline:translator::loni: Translator

$ uk::ac:uwe:neugrid::services::pipeline::translator:;jdl: Translator

storeTranslatedWorkflow
retrieveWorkflow 1 1 T '

retrieve TranslatedWork flow

PSStoreWrapper

Figure 5: Class Diagram of the Translator

As depicted in figure 5, the translator dynamicaihstantiates an appropriate
translator based on the workflow type. To enabl@adyic instantiation of an
appropriate translator, specific interfaces havenbeesigned to format specific
workflows. Each adaptor implements a specific SEnRrovider Interface (SPI). The
Translator package provides two adaptors interfacegutAdaptorSPIl and
OutputAdaptorSRIThe InputAdaptorSPidefines the interfaces that an adaptor must
follow to support translation from a native workfldormat to the Pipeline Service
object-oriented workflow formaOutputAdaptorSPHefines the interfaces that must
be implemented to provide translation from the \loik object-oriented format to a
specific format for submission.

Besides following a specific protocol, the transiatpackage must be registered with
the Pipeline Service. This is currently handled grgviding a line identifying a
Translator to a specific package. Once a translatoegistered with the Pipeline

14

Service and follows the appropriate interface,aibh e dynamically instantiated by
the Pipeline Service.

1.3.2.3 Process for adding a new translator
There are two steps required to create a trandiatdhe Pipeline Service.
1. Implement the Input/OutputAdaptorSPI

The InputAdaptorSPI and OutputAdaptorSPI provideéerfiaces that need to be
implemented to convert a workflow from a nativenfiat to the Object Oriented
format (in case of InputAdaptorSPI) and from anegbjoriented format to a format
for submission (in case of OutputAdaptorSPI).

2. The translator must be registered with the Pipel®evice. The Pipeline
service uses the PSConfig.xml file to look for #alie translators.

1.3.3 Enactor

The current implementation of the Enactor subnhigsdDL to a specifically extended
adaptor for the gLite middleware. The Pipeline 8enenactor is responsible for the
submission of a workflow to the grid infrastructuféne workflow received by the
enactor is a concretely planned and transformed.e@ily workflow planning is not
implemented in the Pipeline Service and is a futasi&. As depicted in figure 6, the
enactor uses a SAGA-based client to invoke the UB/SAdaptor. All interactions
with the Glueing Service are abstracted through tWWESOAPAdaptor at the
Pipeline Service Side. The UWESOAPAdaptor forwdrdaslated SAGA requests in
a SOAP format and invokes the Glueing Service. Gheeing Service uses the gLite-
adaptor to submit workflows to a gLite-based Gnftastructure. The gLite-adaptor
initiates a user proxy and submits the workflovglite-WMS.

Pipeline Service

Pipeline
Service - | SAGA | UWESOAPAdaptor
Enactor

Iy

v

Gilueing

Glueing Service WS Interface 5
Service

SAGA
JavaGAT

glite-adaptor

Fy

w

Gilite Infrastructure ‘

Figure 6: Enactor Architecture

To facilitate this process, the Pipeline Serviceves the following parameters to
the adaptor, however, once the system is integnaiidthe system-wide single-sign
on, this should not be required. This is mentiomedhe subsequent section titled
“Integration with Single Sign On”.

15

1. Grid Infrastructure Specific: VO Name, VO HofDVOMS Server URL, VOMS
Server Port

2. User specific: User Certificate, User Key, UBassphrase

1.4 Issues and Limitations
The current issues facing the Pipeline Servicénaylelighted in this section.
1. Glueing Service Specific Considerations

The Pipeline Service needs to coordinate the esettieval with the Glueing Service
and the Provenance Service. Current monitoringrinédion received from the
Glueing Service is inadequate for comprehensivevdtrance. The Glueing Service
needs to be extended to gather scheduling infoomatletailed logs of tasks in
addition to the output specified in the JDL. Addlitally to support interactive
monitoring of tasks in the Pipeline Service, theighhg Service needs to be extended
to enable monitoring of individual tasks in a waoky.

2. Integration with Single Sign On

Currently to invoke enactment of a workflow, thees certificate, key and associated
passphrase are required to initiate a proxy atGheing Service end. To use this
model the user has to provide all of these de#aiésy time a submission is invoked.
To cater for this limitation the Pipeline Serviceeds to be integrated with a Single
Sign On service.

3. Integration with the Grid Information Services

Currently workflow planning is not implemented, hower for efficient planning
knowledge of the Grid environment is required. Tifermation, such as how many
sites are available, which replicas are presentwveinere different tasks have been
deployed, is required to efficiently plan a workfloThe Glueing Service needs to get
this information from the Grid information servicgSurrently such functionality is
not present in SAGA.

1.5 Futuredirections

A major component of the Pipeline Service that peisto be implemented is the
workflow planner. The issues raised in the previsestions directly have an impact
on the workflow planner. Hence in year 3, the issti@t have been raised will be
addressed and the workflow planner will be impleteérto complete the proposed
Pipeline Service architecture.

16

2. The Provenance Service

2.1 Introduction

A scientific workflow is a formal specification o& scientific process, which
represents, streamlines, and automates the steps ftataset selection and
integration, computation and analysis, to final adgiroduct presentation and
visualization. A workflow management system suppdine specification, execution,
re-run, and monitoring of scientific processes.Bworkflow processes have a level
of complexity that may lead to human error, whicimalatively have a large impact
on the validity of the results that are producedséarchers therefore require a means
of tracking the execution of given workflows soyttean ensure that important results
are accurate. Currently this is carried out maguadifore research is released to the
wider community and is published.

The neuGRID provenance service is primarily intehtt® capture and provide the
information that is necessary during this procd$se provenance service will keep
track of the origins of the data and its evoluti@miween different stages and services.
Provenance metadata captures the derivation hisfoaydata product, including the
original data sources, intermediate data prodwaeid, the steps that were applied to
produce the data product. The provenance servitealNaw users to query analysis
information, to regenerate analysis workflows, ¢ébedt errors and unusual behaviours
in past analyses and to validate analyses. Thacsewill support and enable the
continuous fine-tuning and refinement of the piped in the neuGRID project by
capturing:

Workflow specifications.

Data or inputs supplied to each workflow poment.

Annotations added to the workflow and indival workflow components.
Links and dependencies between workflow camepts.

Execution errors generated during analysis.

Output produced by the workflow and eachkftow component.

oA LNE

In the past few years UWE has been working withrgas from CERN and CNRS,
France to develop a data and workflow tracking. (p@venance) system entitled
CRISTAL which is now being used to track the comdgion of large-scale
experiments at the CERN Large Hadron Collider (LHThe M1li company is
currently working with UWE to transfer CRISTAL tewnblogy to regional French
companies under the product name of Agilium, ferplrpose of supporting business
process management (BPM) and the integration andpecation of multiple
processes especially in business-to-business apphs. In essence
CRISTAL/Agilium is being developed as a busines®ocpss modelling and
provenance capture tool. The product addressesh#mmonisation of business
processes by the use of the CRISTAL kernel so tmaitiple potentially
heterogeneous processes can be integrated withotfaehand have their workflows
tracked in the database. Using the facilities ®saliption and dynamic modification
in CRISTAL in a generalised and reusable mannerliukg is able to provide
modifiable and reconfigurable business process flowk. It uses the so-called
description-driven nature of the CRISTAL modelsact dynamically on process
instances already running and can thus intervettgeiactual process instances during
execution. These processes can be dynamicallycérgigured based on the context
of execution without compiling, stopping or stagtithe process and the user can

17

make modifications directly and graphically of amyocess parameter, while
preserving all historical versions so they canalomgside the new. In the provenance
service, thorough investigations have helpedtausise CRISTAL to provide the
provenanceneeded to support neuroscience analyses and tk indovidualised
analysis definitions and usage patterns therebwtioge a knowledge base for
neuroscience researchers.

2.2 CRISTAL Based Provenance Service Architecture

This section describes how CRISTAL will fit intoettoverall neuGRID architecture to
capture and coordinate provenance data. The subseqgections explain the
implementation details of CRISTAL and highlight hoevovenance is captured,
modelled, stored and tracked through the coursa @halysis.

Pipeline Service
Client

Pipeline Service

Workflow
Planning

User Portal Glueing

Submission/
Enactment | “ Service

Run(Waorkflow)

Monitoring, | |
results and

pProvenance |

Glueing
Service Client

Figure 7: The neuGRID Services without provenanggert

As shown in figure 7, the interaction starts withe tauthoring of a pipeline
(workflows are called pipelines in the context bétneuGRID project), which the
user wants to execute on the Grid (1). Authoring loa carried out via several tools,
the prototype being implemented in neuGRID, usegléteand the LONI Pipeline as
examples of authoring environments. The pipelinghigecture is flexible and any
suitable authoring environment can be accommoda#tédr authoring the pipeline,
the user invokes the submission of the pipelinel(2his case, several things happen:
first the authored pipeline, which is representecaiModelling Markup Language
(MoML) format (in the case of Kepler) or in LONI g&line XML (in the case of
LONI) is transformed into a simple XML based wodkfl format, which is passed to
the Pipeline Service (3). This then translatessiecification into a workflow object,
via an API, which will be provided as part of thgp&ine Service. The workflow
object is translated into a DAX file, via the Paga®AX API. Pegasus is used as a
workflow-planning tool in this environment. The DAMe represents the abstract
workflow that the user has defined. Using the reseslinformation that is available
in a distributed infrastructure (in neuGRID’s case,glite based infrastructure)
Pegasus plans the workflow into a concrete exetutalorkflow. The following
operations are carried out by Pegasus on the voovk(l

18

Tasks are mapped to individual computing resouradspending on

availability of task actors and/or study set regdicor partial workflow

outputs.

Portions of the workflow are mapped to specifionpoiting resources,
depending on the computing platforms and computesgurces provided by
the sites.

The workflow specification is enhanced by inclglidata staging actors to
stage data between computational sites.

The workflow specification is enriched by includiprovenance actors for
provenance collection.

Pipeline Pipeline Service CRISTAL

Service API /
. l j JSDL

' ﬁ Translation /
1 Provenance
structure . .
Description and = c;':si';z Grid
Workflow Planning @) Coordination
Authoring
(Loni
Pipeline I Task
etc..) Output
and Logs
H Querying Service H@
Provenance Store

Figure 8: The neuGRID Services with provenancesttp

The Pipeline Service translates the workflow spegiion into a standard format and
plans the workflow. The planned workflow, as shawiligure 8, is forwarded to the
CRISTAL enabled provenance service which then esean internal representation
of this workflow and stores the workflow specifiicat into its schema. This schema
has sufficient information to track the workflow rthg subsequent phases of a
workflow execution. The workflow activity is repested as a tree like structure and
all associated dependencies, parameters, and emerd details are represented in
this tree. The schema also provides support td titae workflow evolution and the
descriptions of derived workflows and its constituparts are related to the original
workflow activity.

The provenance service provides a provenance-amardlow instantiation engine.
The workflow is broken into its constituent jobslaDRISTAL takes care of the jobs,
their dependencies and the order in which theselldhme executed to complete a
workflow. CRISTAL coordinates the whole job exeoutiprocess and the jobs wait
inside the CRISTAL premises if their dependent $aaie in execution. The workflow
is instantiated in a task-by-task manner by CRISTAhese tasks are sent to the
Glueing Service for execution in the Grid and tksults and logs are retrieved to
populate a provenance structure. CRISTAL is unawéigow the actual scheduling,
task allocation and execution is carried out inuhéerlying Grid infrastructure. All

19

of these operations are performed independentiy f@RISTAL. The information
stored in the provenance structure can be intedgtqueried by users.

2.3 Workflow Instantiation and Execution in CRISTAL

Figure 9 shows the proposed integration of CRISTwith the neuGRID services
architecture in greater detail. The Pipeline Serwidll forward a concrete planned
Workflow in an XML format to CRISTAL. The CRISTAL wrapper is the first
component that will receive this workflow from tpgeline service and will perform
a number of actions on the workflow. In neuGRIDe thrapper will be a webservice
and will accept SOAP calls to allow compatibilitpcainteroperability with other
neuGRID services. The wrapper will process the fovkthat has been received as a
SOAP request and will populate an internal CRISTsuucture from this workflow.
The Provenance service will coordinate with theepi® service to receive a
workflow and store the captured provenance forhkrritracking and analysis. Once
the workflow has been instantiated and populatedth@ CRISTAL structure,
CRISTAL will coordinate with the Glueing servicegabmit the workflow as a whole
or in parts/tasks for ultimate scheduling and ekeaun a Grid environment. When a
workflow or one of its tasks has been executedeieution as well as the state logs
will be sent back to CRISTAL for provenance storagel management. CRISTAL
will also take care of the dependencies betweerowsrtasks in a workflow and
organize the information that is captured during@ fhstantiation and execution
phases.

Cristal Wrapper

= Vs

. - ~ = ¥ il
. . \J | = |
e Ite-_m. S ==, Activity ! i Agent
Descr!pnon_/ '5, Pn——— | | . |Descriptions - \ | Deseription/s
i %

Item i’ 3 Agent/s

.Pipeline Service I Instantiated ltem Object -

Translate) [Plan

e CRISTAL
— o~ o
. - A e 7 Y
bl] S H S VA e e
= a Event | Provenance v Activity
Generation : Gathering _ Enactment
Lf-‘suthors WF 1 ———
% | Provenance | . SRsm | Glueing Service |
; | Provenance |
: Service : Store b —_
User

" Grid _

Figure 9: CRISTAL Architecture

The following sections describe the workflow gemiera workflow coordination,
provenance tracking, provenance storage and quesgegsing aspects of the
CRISTAL enabled provenance service. A sequenceaha®f the whole process is
shown in figure 10 that describes how various camepts in the CRISTAL wrapper
will interact and coordinate with each other.

20

Wrapper | | Create Descriptions | Create Item | | CompositeActivityDef

| H

1 . .

1 Create Agent Descnptnﬂ{-.s
e =

Create Cutcome Descriptions

Create Activity Descriptjons ~
R

'
Create Collection Descfiptions H
_—] :

- Create Item (CreateltemFromDescriptlion)

. Initialise Properties

: Initialize Coliections

I
reate Workflow (instantiate methi Initialise Vertices

Initialise Edges

Return Wivertex Object
Send ltem Creation Acknowledgemeant %

Figure 10: Sequence Diagram for CRISTAL-Wrapper kilow Initialization

1. The CRISTAL Wrapper will first create so-call@djent, outcome, activity and
collection descriptions of a workflow if they do not existeddy. Agents in the
CRISTAL model execute activities. In the neuGRIDplaggation and in a Grid
environment in general, a compute element is dickdty an agent to execute the
workflow activities. In neuGRID a singkegentwill be created for each of the users.
It will take tasks and dispatch them to the Gricbehalf of the users.

To create agents in the Glueing Service, a donganiic implementation of the class
UserCodeProcesmust be provided. The methoohUCLogicmust be overridden to
incorporate logic that would enable the submissiba job to the Glueing Service.
Another change that will be required is to overrideassessStartConditiomaethod.

In neuGRID complex and highly parallel workflowslviie executed, hence each task
may have multiple start conditions that must befilletl before execution can
commence. ThessessStartConditionsiethod forces thé\gentto do some pre-
processing before starting afctivity. This processing could be authentication,
authorisation or another form of dependency ch&dme logic could be put in the
assessStartConditiortbat will check if all dependent jobs of this wiokv have been
executed, or that a new thread should be invokedrfother parallel branch.

2. After the descriptions have been generatedi¢inecan be instantiated through the
CreateltemFromDescriptionlass, which initialises an item to a specificmain Path
and creates 8ystem Kethat identifies thétem The properties and the collections of
the Item are defined and a workflow is specifiedoNhcomprises the activities that
have been previously described. In CRISTAL a wankfis modelled as a composite
activity. A workflow may consist of other compositectivities. The composite
activities that are generated can be reused totecre@w workflows. The
CompositeActivityDetlass handles the definition of a workflow.

21

Wrapper Event Execute neuGRID specific Agent Definition (Extends —
Management Workflow UserCodeProcess
1

(Activity Class) Validation

Initialise Event
(D
Start Execution :jnmahse Workflow in State Machine

L L ly Execute Push Job To Agent
Activities Activity Executed |

Execute Workflow

i Validate Outcome of Activity —]

Validation Information

Workflow Executed

e -
T
I
I
I
I
I

Figure 11: Workflow Execution
An item in CRISTAL is stored as a binary CORBA aftjegCommunication with the
CORBA object is handled via dremProxyobject. ThdtemProxyobject is initialised
with a CORBA IOR reference which identifies thenitén the CORBA server. Every
time a workflow is executed an event is generatbihvstores the outcome of the
workflow. An item will have several events in cas®orkflow is executed a number
of times. Workflow execution in CRISTAL is handle$ shown in the sequence

diagram in Figure 11.

Reserve

Reserved

Ignore
Skip (Done)

Resume

Suspended

=,

Complete

Figure 12: State Machine transitions for Jobs iHSJRAL

To execute a workflow a ne®vent is generated. The event generation initiates the
execution of the workflow by initialising aActivity Object. TheActivity object at
first initialises a state machine of the workflolhe state machine tracks progress of
an Activity’s state while it is being executed. Adies can be described with a
certain number of states such as “Suspended”, rfyiged” etc. The full set of state
transitions supported in CRISTAL is shown in figdt2 The state machine iteratively
executes activities of the workflow and events atered at each activity state
transition. An Activity is executed when a job, whirepresents an activity, is pushed

Proceed

22

to its Agent. The Agent executes the activity adouy to itsrunUCLogic function.
The outcome of the activity is validated againsbatcome schema that is defined at
the time of activity creation. Once the validation successful the state machine
iterates to the next activity to execute the nekt jf the validation fails the execution
of the workflow is halted.

2.4 Workflow Provenance

As previously discussed, CRISTAL generates eventsng the execution of a
workflow. Figure 13 shows the workflow execution chanism from a provenance
viewpoint. The flow of recording an Activity state CRISTAL is as follows:

1. When the Activity class initializes a state machim&t executes the workflow,
at each state transition for each activity, an Evengenerated and stored.
Objects are stored in a domain specific CRISTAlaje schema. The storage
and retrieval of Items is determined and modified d¢onfiguring the
ClusterStorage class. Events consist of the foligvattributes:

Name of the agent, who executed the current event

Role of the agent

Transition information

Name of the step for the element in the Item (Wawfkf

Path of the element in LDAP server

The type of the step i.e. start node of the wonkéiointermediate
State information of the element

Creation date

Se@~ooo0oTp

Transaction

Manager

Execution Generation
{Activity Class) s iaa (Cluster Storage)

WWorkflow Event

Iterative —

1

'

. | :

'

Warkflow . ! |
Execution State Transition !
— 1

\IC:eate Ewvent i

'

'

|

J

- Store Event El

\\I Walidate Outcome (In case
activity
'« is DONE or COMPLETE)

Store Ouicome E:]

1
——]
NCreate new View i
| 1
__-___j i

& =

Store View (Update from prewv. wiew)

Figure 13: Provenance Recording in CRISTAL durirgaaition

2. If a state transition occurs and the transition wassed by the completion of
an activity, the outcome of the activity is firstlidated against an outcome
schema and stored upon successful validation.de t#& validation fails, the
workflow execution is stopped. By querying the Bgegenerated during the
workflow execution users can trace what went wrahging an activity
execution.

23

3. Another item that is stored at each transitiorhes tiew. A view represents a
shapshot of the current version of the latest Eventase a user wants to
qguery for the last event created by the executibm avorkflow, the user
retrieves the “last” view.

4. After this step, a post recording check is perfairtee see if the current view
already exists. In case it exists, a new versiomeiview is created; otherwise
the versioning information of existing view is upeld

The recording of all events in dtem forms the history of the workflow along with
description of the Item, properties, collectionsd asutcome schema. The history
maintenance in CRISTAL is shown in figure 1#m objects in CRISTAL are stored
in the form of binary CORBA objects in CORBA Serv&y providing a CORBA
IOR reference, a user can retrieve an object inSTRL’s client view. All the
description, properties, collection and outcomesoty are stored in an LDAP schema.
CRISTAL uses CASTOR APIs for translating the objedented representations of
these objects to XML files and these files are &vaiy stored in OpenLDAP. In the
client view a user can retrieve these objects loyigding a logical path of the LDAP
Server. As the objects are flattened into simplelXes, at the time of retrieval, it
reforms the object from XML description to prestrd information to users.

[ESNE>

Collection Ty

Typed
Slot

Typed
Shot

Current versions

Contains
Ganaralas pointed to

Froperties N

=3
State »

— _ S/
Figure 14: Item Structure

CRISTAL also has pluggable data storage suppoit ddn be extended by replacing
its default storage mechanism that stores XML fiteat can be queried via
OpenLDAP. The key interface for this purpose€iasterStorageThis interface uses
a configuration file to connect to different retatal databases. The default
distribution usesdefaultConf.propertiesfile for creating an XML database in
OpenLDAP directory structur€lusterStoraggrovides six main functions and these
functions must be overridden for using a speciitabbase. These functions are listed
below:

» open() - initialization

» getClusterContents() — directory contents

* get()

* put()

e delete()

* query() —to expose underlying query engine

24

CRISTAL

J7Jobs J7Propertiesg7 Events %Views %Outeomes 47 Workflow %Colleclions

put get delete getClusterContents
< |— DB Properties

Cluster Storage API

% Reads/Writes

SQLLlte Oracle MySQL custom...

Backend Classes

Figure 15: ClusterStorage API for provenance s@agl retrieval

Configuration
Properties
CRISTAL S——"

ClusterStarage
APIls

e, " s Provenance Service
= 1 Wrapper APls
-

i - 2

Prowenance Store

| RDBMS ‘ XML DB~

Figure 16: Provenance Service Structure

In order to implementClusterStoragefor a domain, one must override the
ClusterStorageput, get, delete angetClusterContentmethods, as shown in Figure
15. CRISTAL usesClusterStorageto store properties, events, views, outcomes,
workflows and collections for each Item. The Itetself contains Paths to these
elements, which CRISTAL accesses through @GhasterStorageAPl. In the context

of neuGRID projectClusterStoragenterface will be wrapped by Provenance Service
APIs, which will provide extended functionality forecording and querying
provenance information. The figure 16 shows thacpss in detail.

25

2.5 Future Directions

1.

Integration with the pipeline service

The CRISTAL structures should understand the siracbf neuroimaging
pipelines and scientific workflows in general.sltould allow users to capture,
browse, reconstruct and validate the pipeline eelatrovenance information.
The current functionality was not implemented fariesatific workflow
provenance and therefore this feature needs toxbended to allow an
improved workflow support.

Authentication and authorization of the provenadat

In neuGRID each user will have separate autherditand authorisation
credentials. Therefore the issues such as gratwlafi authorisation and
synchronisation of the CRISTAL data security wikle tsecurity deployed in
the rest of neuGRID need to be further explored.

Integration with the Glueing service

The Glueing service provides a middleware independechanism to access
resources and submit jobs. CRISTAL should exposlda interfaces that

can allow applications to make use of Grid/Cloudoteces through the
Glueing service. This approach will not tie CRISTAlbwn to a particular

application or middleware platform.

Provenance Schema and database

The current schema and database access mechargsis toebe refined to
provide a fine grained querying and storage meshnaniCORBA related
dependencies need to be removed. The provenamrenation may be stored
on remote databases, which will have to be accdabsedgh SOAP or similar
protocols and such support is necessary in CRISTAL.

Provenance reconstruction

The current provenance reconstruction mechanismCRISTAL is not
sufficient to enable the scientists to reconstrtioéir workflows. The
reconstruction process should help in observingpipeline creation process,
re-executing a pipeline or part of it and modifyiagoipeline and storing it
with a different version.

26

3. The Glueing Service

3.1 Introduction

The Glueing Service is a constituent service ofghreralised middleware services
layer in neuGRID, which aims to provide:

1. A standard way of accessing Grid services withoyihgt services and
applications to a particular Grid middleware.

2. A mechanism to access any deployed Grid middlewagh an easy-to-use
service.

3. A solution that extends and enhances the reusalufitalready developed
services across domains and applications.

4. A service-based approach to shield users and apipis from writing complex
Grid-specific functionality. The user requires anmium set of Grid-specific
APls and the rest of the functionalities are maddgethe service.

5. A simplified approach for enabling clients to irfitere/connect their applications
with Grid infrastructures, without installing andamtaining too many Grid
specific libraries.

3.2 Architecture

The Glueing Service exposes SAGA API functions &b wervice methods with a
one-to-one correspondence. The client applicatioms transparently access the
Glueing Service by using a SAGA SOAP adaptor, whisk have named
UWESOAPAdaptor. It is an implementation of the AstaipAPI provided by SAGA.
The client can include the UWESOAPAdaptor and wajgplications using the
standard SAGA API classes. The SAGA API calls, gateel on the client side, are
passed to the Glueing Service by the UWESOAPAdaptbich is responsible for
communicating with the Glueing Service. The Glue8gyvice itself is implemented
in Java and runs within a Tomcat server instance.

The UWESOAPAdaptor is a component between the tclggaplications and the
Glueing Service. The client applications definesate and submit jobs according to
the standard specification of SAGA. These instangiare then translated into SOAP
requests by the UWESOAPAdaptor. The SOAP requestased for communication
with the Glueing Service. The Glueing Service adtyuaxecutes the client
instructions using SAGA APIs and middleware adaptor

The UWESOAPAdaptor requires a Service Endpoint U&lcommunicate with the

Glueing Service. The Endpoint URL is used to acdbesservice WSDL, which is
then used for service invocation. The WSDL desecritlee definition of all the

exposed methods. The UWESOAPAdaptor calls the gludi methods using SOAP
requests and the Glueing Service sends back SOAgponses to the
UWESOAPAdaptor. The UWESOAPAdaptor then translétesSOAP response and
returns the execution results to the client in then of Java or SAGA specific

objects.

The following diagram (Figure 17) shows a scenariere the UWESOAPAdaptor
interacts with the Glueing Service. The UWESOAPAdgapasses the middleware

27

and job information to the Glueing Service usingA®Oobjects and the SOAP
response is sent back to the UWESOAPAdaptor froen Ghueing Service. The
exposed functions of the Glueing Service are dssti$n detail in section 3.

UWESOAPAdaptor Glueing Service
ServiceURL o
o _ ServiceWsoL ___ _T
1 SOAP Request: createJobService(URL resource manager) |
- _SOAPResponse __l_
| SOAP Request: setAttribute(String macro, String value) |
SOAP Response
T —_— — — - — — — — 7

Figure 17: A sample use case

The architecture diagram (Figure 18) shows howpli@ation contacts the Glueing
Service. The Pipeline Service, shown in the figui®, one of the potential
applications of the Glueing Service. This servigea the SAGA APIs and the
UWESOAPAdaptor to communicate with the Glueing 8mv The
UWESOAPAdaptor accesses different methods of thei@ Service by getting its
WSDL. The methods, published in the WSDL, execligedctual instructions that are
generated on the client side. Thus, the Pipelingi&einitiates a grid activity that is
then forwarded to the Glueing Service by the UWE$B4aptor.

"
The Glueing Service e GridsaRr1} okl

]
[Service i Middleware

SAGA

Implementation

Middlewars
Adaptors

glite
riddlevware

/]

S5AGA SOAP Adaptor

SAGA API ' S5AGA Implementation

?
SAGA API calls
/

Pipeline Service

Figure 18: Glueing Service Architecture

28

The Glueing Service, as shown in the diagram, cenncunicate with different Grid
middleware such as OMII/GridSAM or gLite. This alle client applications, such as
the Pipeline Service, to use Grid resources pravitheough different middleware.
The Glueing Service is built on Java-SAGA, whichaigava implementation of
SAGA specification, and middleware specific adaptéo communicate with a
particular middleware. We are also using an adafiiorjavaGAT that has been
written to access the gLite middleware. The adaigtdiscussed in section 3.4

3.2.1 Servicelnterface

The webservice interface of the Glueing Servica &t of SAGA-like methods that
are exposed to clients. The signatures of soménefekposed methods are given
below:

public String write(DataHandler dh, String fileNajne
public String[] listFiles(String dir) throws Exceiph
public DataHandler read(String fileName)

public String runSAGA_OE(String url, String apprii® args, String err, String
output)

3.3 Functionality

The current implementation of the UWESOAPAdaptocagsulates the following
functionality:

* Job Submission
* File Management (Reading, Writing, Directory ligtjrGetting file size)
* Job Monitoring
* User Authentication
These are explained in detail below.

3.3.1 Job Submission

The client applications, using the UWESOAPAdapfmss job information to the
Glueing Service. The Glueing Service (GS) loads #ppropriate middleware
adaptor, based on the site-specific server cordtgam. For example, if the site
administrator has configured the GS to use gLlte, &S loads the gLite adaptor by
creating a “Preferences” context for the JavaGA#ap#ar. We are using the gLite
adaptor that comes with JavaGAT, as explaineddtise3.7. A context is a specific
piece of information that is shared within a patac session. An application may
associate different contexts with a particular ieess1 order to make them available
throughout the lifetime of the session and to bjeots that are part of that session.

The GS tells JavaGAT to use gLite by setting the opprty
“ResourceBroker.adaptor.name” to “gLite” for theréRerences” context. Once this is
done the Glueing Service creates a job, basedeojobhinformation sent by the client
application. The Glueing Service uses SAGA job ngan@ent APIs for creating a
job, submitting it to the available Grid resoureesl retrieving its status. The SAGA
job management API covers four classes; thesd@8erviceJobDescription Job
andJobSelf These are explained below:

29

3.3.1.1 JobService (Selecting a Resour ce M anager)

The JobServiceAPl is used to select a resource manager. AnnostafJobService
represents a resource manager backend. A resoartager is an endpoint where the
job is submitted by the client application. Thisaoerce manager can also be an
execution service if it executes the job.

Input parameterTo create an instance dbbServiceclass an endpoint URL of the
resource manager is required as an input paramnoetezateJobServicmethod.
Example The Glueing Service uses an endpoint URL for sttingi the job to the
resource manager. For example if the resource neama@ridSAM then an instance
of JobServiceis created aszJobService> js = JobFactory.createJobService (new
URL (“https://HOST:PORT/Gridsam/services/gridsam”)

3.3.1.2 JobDescription

The JobDescriptionAPI defines the job using a well defined set dfiladites such as
the application executable and associate argum@is.JobDefinition attributes
behave like tags in JSDL/JDL and thus these atggumimic JSDL for the
middleware and are passed to it internally by SAGA.

Input parametersThe JobDescriptionAPI needs two essential parameters in order to
define the job i.e. the application executable patid the exact application
parameters.

Example If the application execution is “/bin/echo” whitdhkes a string as input
parameter i.e. “hello” then the Glueing ServicangslobDescription, defines a job
as:

<JobDescription> jd.setAttribute (JobDescription.ERUTABLE, “/bin/echo”) and
<JobDescription> jd.setVectorAttribute (JobDescigpnt. ARGUMENTS, new String(]
{“hello™}).

3.3.1.3 Job (Job Creation)

The Job class represents an actual job that can be sulbmdtéhe underlying grid
middleware. An instance of thiob class can be created usihgpbService.createJob
which takes an instance of tdebDescriptionclass as an input parameter. Instances
of bothJobServiceandJobDescriptionclasses are pre-requisites for creatidgla
Example A job is created with:

<Job> j = <JobService> js.createJob (<JobDescripti> jd)

The job thus created can be run with:
<Job>j.run()

3.3.2 File Management

The adaptor also supports reading and writing titethe middleware backend of the
Glueing Service. To transfer files to the Glueingrn&ce the adaptor uses the Java
Activation Framework. This functionality is desatbin more detail in section 3.2.5.
Once the file has been written to a temporary looathe Glueing Service loads the
specific middleware adaptor based on the site-8peamnfiguration, as in the case of
job creation. The file is then written to the miedare backend using the loaded
adaptor. It should be noted that because the GJuggnvice is in fact a stateless web
service, writing to or reading from files in chun&annot be supported. It would be
prohibitively expensive to provide such functionali

30

3.3.2.1 Writing afile

To write a file to the Glueing Service, the cliéinst creates &ile object using:
<File> f = FileFactory.createFile(path-to-file, Flgs.READ.getValue())

The READ flag is important here because it telks dldaptor that the client is getting
ready to read a file and write it to the Glueingv&=. Then the file is actually written
with:

<URL> u = URLFactory.createURL (path-to-file-on-GS)

f.copy(u)

f.close()

3.3.2.2 Reading afile

To read a file from the GS, the client creatésla object:

<File> f = FileFactory.createFile(path-to-file-on-S, Flags.CREATE.getValue())
The CREATE flag tells the adaptor to create a l@rapty file in anticipation of the
one that will be read from the GS. The file is thead with:

<URL> u = URLFactory.createURL (local-path-to-file)

f.copy(u)
f.close()

3.3.2.3 Directory listing

The following code lists the contents of a diregtor
Directory dir = FileFactory.createDirectory(sessipserverDir);

System.out.printin(dir.list());
dir.close();

3.3.2.4 Getting filesize

To get the size of a file, a client must do théofwing:
File remoteFile = FileFactory.createFile(session, remoteURL,
FlagsCREATEgetValue())

Systenoutprintin("Remote file size: + remoteFile.getSize() + KB")

3.3.2.5 Handling SOAP attachments

Files are transferred to the GS as SOAP attachmusiig Axis2J. Axis2J uses the
Java Activation Framework to handle the transfer.upload a file to the GS, the
following interface is used:

private String uploadFile(DataHandler dh, Stringefiame)

The UWESOAPAdaptor uses the following code to tanthe file:
Write writer = new Write();

DataHandler dhSource = new DataHandler(new
FileDataSource(nameUrl.getPath()));

writer.setDh(dhSource);
writer.setFileName(target.getPath());

try {
gs.GlueingServiceStub stub = new

31

gs.GlueingServiceStub(sessionimpl.listContexts()
[0].getAttribute("ServiceHost"));

WriteResponse response = stub.write(writer);
logger.info("Method copy returned with: " +
response.get_return());

}
catch (java.lang.Exception e)
{
e.printStackTrace();
throw new NoSuccessException("Unable toewilié to
server.", e);
}

3.3.3Job Monitoring

To monitor the execution of a job, the client nnegjister a callback with the adaptor.
The callback class must implement ®a&llbackinterface. To register the callback:
<Job> job.addCallback(metric, callback object)

The Callbackinterface specifies the following method signature
public boolean cb(Monitorable m, Metric metric, Gext ctxt)
3.3.4 User Authentication

In its current implementation, the adaptor supptresgLite user authentication. An

application developer creates “Breferences” context and passes it on to the
UWESOAPAdaptor. The context contains various sgstiior the gLite adaptor that it

requires to function. The some of the attributesligted below:

* VirtualOrganisation
* vomsHostDN

* vomsServerURL

* vomsServerPort

To specify the gLite certificate, the user creaté€ertificate” context. This context
contains the following attributes:

e Context.USERCERT
e Context. USERKEY
e Context. USERPASS

Context. USERCERT and Context.USERKEY contain theations of the user
certificate and private key respectively. The UWBSAdaptor uploads both these
files to a temporary location on the GS, where taey stored until the gLite adaptor
needs them. The locations of these files are thessqul to the gLite adaptor for
authentication. When the adaptor no longer neesl§ilgs, they are removed from the
GS.

32

As previously said, all this mechanism will be remd as soon as the SSO
integration will be done.

3.4 gLiteAdaptor

Starting with version 1.0.1, a gLite adaptor hasrbmtroduced into the SAGA Java
implementation. This adaptor supports job submissind monitoring. However, at

the moment it only supports submission of singlesj&ince the SAGA API currently

does not support workflows, the gLite adaptor hasnbextended in a non-standard
way to support workflows.

We have provided extensions to the Glueing Sertheg will directly interact with
the JavaGAT engine for the workflow functionality.this case we have used SAGA
for all the functionality SAGA provides, and we vieaextensions at the Glueing
Service level for functionality which SAGA currepttloes not cater for. We do not
want to break the SAGA standard, and thereforeempht functionality "apart” from
SAGA at the Glueing Service level in order to impent WP6 services philosophy.
In future however, as workflow support is addedS®GA, we only need to change
the Glueing Service to migrate functionality froimetJavaGAT engine to SAGA
implementation. This would not affect any othem&= at all. When it will be
officially available inside SAGA, we will simply greecate this functionality.

3.5LORISIntegration

We are in the process of testing and integrating HtWESOAPAdaptor to the
Prodema LORIS application. In this regard, we aceking closely with the LORIS
developers and initial integration and tests haenlsuccessful. Since we do not have
direct access to the LORIS source code, we havelyomon the LORIS developers to
test the adaptor functionality and provide feedbd&2hkce the required features have
been fully tested, we plan to roll out the UWESOARAtor in the neuGRID
production environment.

3.6 Limitations and | ssues

The Glueing Service exposes SAGA APIs; thereforeah only provide those
functions that are supported by SAGA API. The reguients are not fully addressed
in the current implementation of the Glueing Seeviiecause of the lack of support
for those requirements in the current SAGA impletagon. Some important
limitations in the implementation are discusseawel

3.6.1 Workflow Support

As the Pipeline Service generates pipelines or fiawis to be executed over the
Grid, it needs an enactment engine that can bieakvorkflow into its constituent
parts/jobs. It also needs to resolve job dependsramd then execute the sequence of
jobs efficiently. The current release of SAGA camlyosubmit one job at a time,
through its JavaGAT adaptors, to a submission systech as GridSAM. Thus it does
not have support for workload management and sdimgda series/sequence of jobs
according to the requirements of workflow. Thisklaaf workflow enactment in
SAGA limits the scope of the Glueing Service. Thig Pipeline Service that deals
with workflows cannot be fully supported by the &g Service at the moment. We
have developed a temporary workaround for thisgdescribed in section 3.4. This
does not support reporting of the workflow statinee the gLite adaptor was written

33

for single jobs, although gLite reports the staiftithe entire workflow as a single job.
We are currently investigating various possibleusohs that will allow the gLite
adaptor to report the status of the entire workflas well as retrieve the output
sandboxes for the jobs that constitute the workfbmee they have been executed.

3.6.2 Single Sign-on

We need to implement a single-sign functionalityfailitate users. Currently to
invoke enactment of a workflow and access othesure®s, the user's certificate, key
and associated passphrase are required to iratiptexy at the Glueing Service end.
To use this model the user has to provide all e¢hdetails every time a requested is
made. To cater for this limitation the glueing, gdipe and other services need to be
integrated with a Single Sign On service (SSO)sTask will be achieved in year 3.

3.7 Conclusions

The Glueing Service addresses major requirementiseoheuGRID project and will
provide a generalised framework for accessing messuover the Grid. The
heterogeneity of distributed resources and det#ilgrid middleware architectures
will be transparent from users. The Glueing Servadso hides complexities of
interfacing with different grid middleware, whichillallow accessing grid resources
through a set of high-level functions. The serveogposes SAGA APIs and can
communicate with different middleware through theiddleware adaptors. Details of
middleware interactions are kept hidden from useabling them to seamlessly use
grid functionalities. This shields the low-levelddieware difficulties from the user
and will encourage them to use them with littlenorknowledge. The design of the
Glueing Service is based on SOA principles, whidh kelp different services in
neuGRID to use service functionalities through déadized interfaces. This will also
allow other client applications to use service deas by inspecting its WSDL,
available online at the service endpoint URL. THeASbased architecture of the
Glueing Service is in line with the project reqoments and will provide a gateway
for all WP6 services to access grid resources.

34

4. The Querying Service

4.1 Introduction

The user requirements analysis clearly identifiedt theterogeneous sources of
complex data are common in clinical research enwirents. The Querying Service is
therefore an important service within the geneealisniddleware services layer. It
will provide methods to enable the efficient quegyiof heterogeneous data in
neuGRID. The primary aim of the service currenfiylimited to allowing users to
guery the data successfully. In the future we ®@iiblore the intelligence assistance to
the user during query formulation. The data as aglbeing heterogeneous in nature
could also be in many different formats. The QuagyService, as stated, is designed
to accommodate heterogeneous data. This includes fdemats that range from
images, flat files, relational databases to XMLisT$ervice (as depicted in figure 19)
will provide a choice of ways in which the user cprery the data held in neuGRID,
including:

submitQuery{String query)

Extendable Abstraction
tohandlemany kinds of
reseurces local and
remotc.

Create a querying service which can query dispatata resources. These
data sources, in the context of the neuGRID prpjact the provenance,
LORIS and other repositories in the Grid where sews well as the analysis
data may be stored.

Craft a solution which is platform independent aedvice oriented.

Where possible create a synergy between the queofiheterogeneous data
resources and the associated metadata.

Client1

Querying Service

Remate Grid Provenance

Resources Service

Figure 19: The Querying service will query a numbieheterogeneous data
sources

35

Year 1 deliverable D6.1 reported the work that wasied out at the early stage in the
project to analyse the initial user requirementd afentify a number of potential
service models that could be implemented. Following, a phase of prototyping and
experimentation was put in place to gather as nmfchmation as possible prior to a
final implementation strategy being created. It iels that as the querying service
depended heavily on the designs and implementatminother services, the
development schedule for this service should beiditbinto alignment with the
completion of the user requirements analysis. BH@wvs the querying service to be
tailored to better address the requirements ofsusmed provides enough time for other
system services to reach a level of maturity bedongfinal decisions are taken.

4.2 Draft Service Modé€

The design shown in figure 20 was proposed in [268.1the candidate model for the
Querying Service. Further experimentation and eatadn has confirmed this as a
potentially good choice although it will be evak@tin the light of the final user

requirements specification (D9.2,). Implementatietails from the other services that
will use the querying service will also be use@valuate this model.

Porticts

Query Portal |

|

JAISINIITD

HIGH AvAallLAaBILITY e
ABSTRACTION LAYER T1

| i

AT

o

= DOs1 T DOs2 ':—j
| :

ABSTRACTION LAYER

s

DRI DR2 (=11
> == L - L .
e - I

Figure 20: A Centralised Meta-data Approach

The design that was identified in D6.1 was initiallelected because of its high
availability. In this architecture, several instascare deployed simultaneously; this
means that if one of the instances fails to respontlally, the client could
automatically select a different Distributed QueBgrvice (DQS) instance. The
quality of service therefore would likely remainafifected by such a failure. The
distributed querying service could be instantiatedltiple times and each time it is
deployed, a local instance of the meta-data dataisasreated. Queries may be more
efficient with this architecture since each DQSdsah local instance of the meta-data.

Backup would be fairly trivial in the case of tmwdel since the data is instantiated in
several places at any one time and a master coplgl ¢ kept somewhere and

36

sequentially updated. Scalability is a requiremtrat this model well fulfils. If
guerying is extremely popular and the quality aveee falls below expectations, the
DQS could be deployed on another server, thereliynmahe data more available.

The model could be modified to provide only ondanse of the DQS and a single
instance of the meta-data. This would make maimemaeasier but the high

availability would be compromised and the model ldouwot be as scalable to allow

more traffic. Load balancing could be implementedaalayer above the querying

service instances, with each service providingrimgtion to the load balancer based
on their load and speed. The client could useitiicgmation to select the best choice
(nearest querying service with the lowest load)erfg\time a query is submitted, it

would first pass via the load balancer which wosllect the optimum querying

service. The simplest way of implementing suchaal lbalancer would likely contain

a single point of failure. Clients could howeveelest a default querying service

which is known to be available as a fallback in ¢hse that the load balancer is down,
thus eliminating this issue.

In summary, the draft service model offers thediwihg advantages and poses the
following issues.
Advantages:

- Well suited to an SOA design.
- Scalable.

- Straightforward to backup.

- High Availability

Disadvantages:

- Raises the issue of keeping the DQS instancés-dpte and consistent.

- Bandwidth is a valued resource with some institigt suffering from low levels and
these could be put under strain if each querydhtdrs the querying service goes to
them.

4.3 Provenance Querying

Provenance querying is an important aspect of therying service. CRISTAL
already offers partial functionality to store andety provenance and we need to
extend it so that the provenance repositories cteldjueried from the Querying
Service. There are primarily two ways for queryiihg provenance information in
CRISTAL that can be extended in the querying servic

One method is by using the querying servicalitectly access the database where
ClusterStoragestores all the data. The domain specific imple@igort can be
integrated with the neuGRID PKI based securityasfiructure. To map workflows
and Items and the associated Events to a speskicaredential, a property might be
introduced which holds the users Distinguished N&DM). The details can be read
in the provenance service section. When a user wittertificate containing the
concerned DN accesses the Item, the user shousbleeto query and retrieve the
results. This mechanism can be further extendeiddorporate access control lists
and implement fine grained authorization policiesaccessing the provenance data.
This interaction is shown in the following sequentégure 21.

37

Provenance

Provenance Service Service Storage
Controller Manager

e — P T—

I
|
: Check User Credentials

— Send Query

Deny Access (Incase
of invalid credentials)

Get data (Incase of valid credentials)

Query Result Data

-

Figure 21: Query Processing through Provenancacgerv

The second method for querying the provenancearrdton stored in a CRISTAL
store needs a query to be sent to the partidtéan Users can communicate with
Items via anltemProxy The querying sequence diagram for this particakse is
shown in figure 22In this architecture if a user desires to querydarertain set of
events during the execution of a workflow, the usiirfirst provide his credentials to
the CRISTAL Wrapper through an appropriately definAPIl. The CRISTAL
wrapper query method will use the CRISTAL GatewayPlAdeclared in
com.c2kernel.process.Gatewdyhe Gateway API will allow the wrapper to reteev
an Item Object based on the CORBA IOR (identifier for fkem) and initialize an
ItemProxyto communicate with the Item through the CORBAtpcol. The Wrapper
will then call thequeryDatamethod on thééemProxyto retrieve query results.

In case the value of a certain property of thenlis to be retrieved the following
guery is specified:

* [Property/[Name]

If a workflow definition is to be retrieved the fowing query is specified:
* /LifeCycle/workflow

If an outcome is to be retrieved that was generateal specific event, the following
query is specified:

 /Outcome/[SchemaName]/[SchemaVersion]/[Eventid]
To retrieve an event the following query is speifi
o/AuditTrail/[Eventid]

If Job information, along with state related inf@tmon is to be retrieved, the
following query is specified:

« /Job/[Jobid]

38

Wra r Gateway

i Interface)
] LI

Get Item Proxy

Retrigve Item

ltem Object

Return Initialized
Iteam Proxy

Send Query

Relrieve reguest

Result

Query Result

A

Figure 22: Query processing through ClusterStorage

4.4 Conclusions and Future Directions

A service was designed that is in line with the GRID design philosophy. The
initial user requirements from WP9 were analysed #&ollowed to produce a
candidate service model. D6.1 reported this worét anphase of prototyping and
experimentation followed, which allowed the gathgrof information that will drive
the final service implementation strategy. It beeaapparent that the Querying
Service more than any other, depended on the desigth implementations of other
services. The development schedule for this semwee therefore realigned with the
completion of the user requirements analysis. Tils allow the querying service
architecture to be informed by the requirementssefrs and provides enough time for
other system services to reach a level of matbetpre any final decisions are taken.
In the coming months the query service architecwitebe implemented to allow
flexible access to neuGRID data. An API will alse developed forming a standard
interface to the querying service. This procedsmed so that the resulting querying
service can be fully tested before it is integrattiin the neuGRID infrastructure.

39

5. The Portal Service

5.1 Introduction

The Portal Service is the single point of entry fmers to access the neuGRID
services. It hides the complexity of the underlylogi-level neuGRID architecture
from the users and enables them to focus on ukagdrvices' functionality. It allows
users to simply authenticate, access the senhceg/se the data, launch analysis and
visualise their results.

The user requirements, which have been collectetheyWVP9, state the following
functionalities have to be addressed by the pedalice:

» Easy to use interface.
* Flexible interface that could be easily customiaad reused.

» Single point of contact to access the underlyimyises that may be further
composed with the different low level services.

The Portal Service is based on open standardsstreemne-usability and a good level
of integration with other components. An importaspect is the federation of the
existing web applications using a Single Sign O®B@% facility and a shared

neuGRID menu. This will provide the users a featiole and a harmonised interface.
The creation of a dedicated portal, which will sggate services without an overly
restrictive web interface, will enable users to #ldel missing building blocks to the
portal. Thus neuGRID will offer a harmonised andefi@ted set of specialised and
dedicated interfaces to the users. It is anticgbaitet this will deliver a satisfactory

user experience, thereby encouraging the widertamopf the neuGRID platform.

5.2 Architecture Description

The architecture as shown in figure 23 is madefujree principal components: the
neuGRID Single Sign-On (SSO) system, the neuGRKEhbl@ard (menu — in orange)
and the neuGRID JSR286/WSRP 2.0 compliant portal.

CAS Web SSO
Web
Service
—_— 4 JSR2BE6/AIAX |
— based portal
WwWeb Actor
Service e ——
_—
Web LORIS
Senvice 2» | frontend
—_—
— 4
UGR
Web ——
Service P | security
Application
— frontend Actor

Figure 23: The Portal Service architecture.

40

A Single Sign On (SSO) system is a mechanism thatve a user to share its
authentication between different applications. @uoeount is used to access all the
applications and one single login is required ideorto access all the facilities. The
neuGRID SSO is based on CAS, the Central Authdidit&erver, which is a widely
used Open Source SSO implementation in Java. Ibéas adapted to the neuGRID
architecture, and integrated with the MyProxy smvi After a successful
authentication (as shown in figure 24) CAS retuuser's attributes as SAML
assertions, so that protected applications aretalget all the required information.

Central
Authentication
Server

IO— Validation
O— Ticket transfer .
ﬁ Arbl’rrc:ry
Web browser neuGRID

M Service
@ initial request

Figure 24: CAS Workflow

The neuGRID dashboard is a JavaScript menu thabeaintegrated into different
services, federated by the SSO, providing themifledmeuGRID navigation menu.
JSR 286, the Java Specification Request 286, ifPtrdet specification created to
enable interoperability between Portlets, Portatgl @&ortlet Containers. These
components allow the integration of mark up codenflheterogeneous sources into a
single portal. WSRP 2.0, Web Service for Remotetl€tsrversion 2.0, is a recent
OASIS Standard that introduces the possibilityrtiegrate remote JSR 286 portlets
(as shown in figure 25) into a portal alongsideldsal portlets.

The portal will integrate both local and remote tjgds to aggregate the different
features offered by the neuGRID web services. Al&SEge will limit client-server
exchange and will allow refreshing only the reqdifart/portlet of the page that
underwent some change.

Portlets are small applications which have the#spntation layer as a pluggable User
Interface component. A portlet provides a spedgiiiece of content (information or

service). Each portlet that is present in a pagelymes markup to be included as a
part of the portal page. The lifecycle of the peidlis managed by the Portlet
Container which runs the portlets, providing themthva runtime environment and

handling the persistent storage of the portletefgpences. The Portlet Container
receives request from the portal to execute requasthe portlets. A Portal, as shown

41

in figure 26, is responsible for the aggregatiorthef content received from portlets
and provides facilities to authenticate users ardgnalize the content.

000!

Local

portlet
JSR286/AJAX WSRP 2.0
based portal Portlet AP Portlet
Container
. N — WSRP 2.0 WSRP 2.0
L'—-’ consumer Internet producer
4- Remote —\(Local
9 — portlet portlet

Figure 25: Overview of a JSR286/WSRP 2.0 architectu

Client Device
Portal Page
«—— <+— | Portlet A
J,l «—— 4+—— | Portlet B
B C < Portal Portlet
;] Server " Container ‘ Portlet C
/
/ﬁ «— +— | PortletD
/

/

Portlet Windows

Figure 26: The Portal Page Creation - extracteoh filee Java Portlet Specification,
version 2.0

Portlets follow the Model View Controller (MVC) patn that separates the
responsibility between a model, a view and a cdletrahus enforcing a clean
application design. They have multiple window mo@eé&w, HELP, EDIT), and
multiple window states (NORMAL, MAXIMIZED, MINIMIZED) accessible using
the portlet's window controls. It is also possitdéhide the controls, ensuring that the
users see what the portal administrator wants tioesee without being able to alter it.
With JSR 286, as shown in figure 27, it is alsogdae to update only single portlet
of the page.

42

Portlet Portlets
container A B C

| - |
y Actionon B) R
1 | » processAction

1 | The Action

I _ I Resp(event(X)) Phase must

I Wire o N > be finished

; betweenB | _______ o] processEvent(X) before the

j andA I * render phase

| exists 1 « starts

1 D

1 I -

1 Lo N render ~ Render

1 P " requests are

1 F """"" > »> - fired in no

] I_'_'_':::_':::I; N specific order.

1 !' __________ - They may be
1 New Page | - fired one after
@ [- 1 the other or in

c 1 1 parallel.

Figure 27: Request Handling Sequence - extracted the Java Portlet Specification,
version 2.0

The chosen JSR286/WSRP 2.0 compliant portal igayf€ommunity Edition portal,
which is an open source portal environment in Jawagration with the CAS Single
Sign On facility, which is used by neuGRID, candasily achieved as Liferay is CAS
aware. The OpenPortal Portlet Container 2.0 cam lad¢sintegrated with Liferay. It's
not yet the default Portlet Container, but onceded it allows the use of its WSRP
2.0 features, either as WSRP 2.0 Producer or WSRPCBnsumer. The use of
jQuery, a JavaScript based querying frameworkwalloreating nice and responsive
interfaces as shown in figure 28.

| £ Welcome - neugrid eu

A Grid-based e-infrastructure for data archiving, = | .
communication and computationally intensive applications in
the medical sciences - An FP7 EC-funded project](2008-11

il CPU: 1.57%
! gl HOD: 1633 %

@ 5 Pendine Messages
& Uptime 5hasmazs
flla User Quota 75%

neuGRID will be a new user-friendly Grid-based research e-Infrastructure enabling the European
neuroscience community to carry out research required for the pressing study of degenerative
brain diseases. In neuGRID, the collection/archiving of large amounts of imaging data will be
paired with computationally intensive data analyses. Neuroscientists will be able to identify
neurodegenerative disease markers through the analysis of 30 magnetic resanance brain images
wia the provision of sets of distributed medical and Grid services I

s(es) submitted

illa Loes Browser

Tarmi stuse

¥

Transferring data from liferay.healthgrid.org..
:open liferay.healthgrid.org

=] [1/1] ALL 2

Figure 28: The Liferay-based neuGRID portal.

43

The architecture offers several benefits: it imdtads-based, it allows decoupling
user interface from web services and as a consequignshould be quite easily
reusable. It even allows the reuse of existinglgist It can be used to make the
interface user-customisable and can provide usélstiheir own set of private and
public pages.

5.3 Functionality and Features

The Official CAS support is obsolete as Liferagidl using CAS Protocol 2 whereas
neuGRID is using CAS Protocol version 3 and the %ANksertions that are
extensively used in the neuGRID SSO architecturertivide access to the users'
attributes to the different neuGRID services. fuieed the development of a custom
authentication handler based on the existing CABgnation, using the features
provided by Liferay. It was updated to handle th&SC3 protocol. This step required
to create the class neuGRIDAutoLogin which impletaen
com.liferay.portal.security.auth.AutoLogin. Thisss is responsible for extracting the
user's attributes from the SAML assertion thatraterned by CAS once the user has
been successfully authenticated. A Liferay usaréated using these attributes if it
does not already exist into the local Liferay dats The Distinguished Name (DN)
of the user is normalized and used as the screeer.na

A Liferay hook was also developed in order to bke @b customise the terms of use
page. A new portal user has to accept these teefmebbeing able to use the
neuGRID portal. The former neuGRID portal developsthg Ruby On Rails has
been completely migrated to Liferay. The design beasn migrated as a Liferay
theme. The neuGRID menu has been ported into dpantluding the Grid load
glowing brain that is updated using Ajax and th&otece serving facility of the JSR
286. The portal is now ready to receive the neuGpiilets.

'l NeuGrid Demo Study | &

[>]
[1/2] Top 7 B¢

[
Tr.

ansferring data from neugrid.test.healthgrid.org..

Figure 29: The dashboard integrated with the atas&iORIS frontend

44

The neuGRID's dashboard (see figure 29), whichnallto seamlessly integrate the
neuGRID menu into any web application, is alsograged with CAS. With only one

import line added to the head of the web pagd|atva to easily add the neuGRID's
dashboard to any web application. The glowingrbsliown in the neuGRID menu,
representing the Grid load, is dynamically updaisshg an AJAX query where the
server returns a JSON (JavaScript Object Notatiepjesentation of the Grid load.
The Grid load is computed on server-side basedh@mformation made available by
the neuGRID grid infrastructure.

Usage of the organization/community/user model hia tiferays’s portal allows
creating a clear structure representing the neuGi¢bitecture:

* one organisation: neuGRID
* one location/sub organization by site: Kl, FBF, V&M
e one community per project: E-ADNI, AddNeuroMed, etc

» users will belong to the main neuGRID organizatm to the corresponding
location

Users are able to join and quit communities acogrdio their interests. Joining
community is moderated using restricted communifesture. Each community
provides social tools to users (a shared calerdaocument library, a WiKi, message
boards, a blog etc). It is even possible to have gpecific theme per community.
Liferays also allows the users to have their ows sé private and public pages, but
in order to keep a simple and clear portal thisuleahas been deactivated for now.
One portal will be deployed for the whole infrastture with portlets allowing
guerying of the services/facilities, hosted at KBF and VUMc, as per the sites and
project policies. If needed WSRP 2.0 portlets ddae integrated in the portal, but in
order to get as much responsiveness as possible t@anénsure an easier
administration, local JSR 286 portlets are preterigne main public part of the site is
implemented by creating pages into the default ggesnmunity. It presents the
neuGRID project and explains how to join neuGRIaaser.

The Liferay-based portal was movedHibp://neugrid.healthgrid.orgnd replaces the
old Ruby On Rails-based portal. Despite the faat the Liferay-based portal was
actively developed, there is still some work to kone. The user's
communities/groups have to be extracted from th& GAML assertion.

The custom CAS logout has to be integrated, perbgmompleting the development
of a NeuGRIDFilter class, implementing javax.ser¥dter.Filter and allowing
handling of the Single Sign Out of both Liferay aDAS.

5.4 Implementation Details and Environment

The Liferay version used is the latest Communititi&a version 5.2.3 along with the
corresponding Plugins SDK. The neuGRID Liferay gbrs deployed in Tomcat 6
with a MySQL 5.0 database and is using a Sun Javy®K on a debian Lenny
paravirtualized Xen host.

Historically, Liferay has to be extended using BT environment, which allows
modification of any part of the portal source codet in the recent versions, the so-
called “Plugins SDK” is provided. This Plugins S2Kows development of portlets,
themes, layouts, hooks and Web Applications witloveer coupling with the main
Liferay portal source code. They are built agathstLiferay APl and not against the

45

implementation classes like with the EXT environmeierefore, the neuGRID
theme is developed using the Plugins SDK. The néDGRenu is developed as a
portlet using the Plugins SDK. The neuGRID termsusé page customization is
made using a JSP hook, allowing customization of laferay JSP pages bundled
with the portal, without having to use the EXT epwniment.

The development of the portlets/hooks/themes etDIs (Integrated Development
Environmet) agnostic. The Liferay team providesdhé scripts required to build and
deploy either the whole portal, the EXT environmentplugins for portlets and
themes.

5.5 Future Directions

Given the fact that it is quite a complex architeet the processing of requests could
be a bit slower; cache techniques have been deaetltpaddress this problem. The
technical choices which have been made will algoire more work from the service

providers as they will have to provide portlets fmabling access to their web
services.

Once the portal is ready, it will be moved to a duction environment. The

customization of its comportments will be a reqdistep to have the best possible
user experience. Liferay provides facilities sushciustering, load balancing and
advanced caching techniques which will help in enguthe robustness of this

solution. This will likely be achieved before thedeof the project.

46

6. The Anonymization Service

6.1 Introduction

The purpose of the anonymization service is tolifate the pseudonymization and
de-identification of the data that is stored witthe neuGRID infrastructure. In order
to make the data available to the users for armlyee anonymity of the patients
should be preserved.

Pseudonymization is defined by Wikipedia as "a pduce by which all person-
related data within a data record is replaced by antificial identifier (like a hash
value) that maps one-to-one to the person. Thécatipseudonym always allows
tracking back of data to its origins which is théealence with anonymised data,
where all person-related data that could allow tvacking has been purged.” The
pseudonymization process includes the checkingesf fo ensure that all the markers
which can provide information to identify a patieme removed before the image can
be made available. Most of the time this will benedy removing the image file's
text tags containing metadata about the patienh siscname, date of birth or any
other information that could identify them.

In exceptional cases however, it may be necessagetanonymize the data, i.e.,
identify the subject the data originated from. hdey to allow de-anonymization, a
key will be generated and stored in the Patiend® df the files. Following multiple

discussions which occurred within the consortiuapeeially with WP2 colleagues, it
was concluded that returning this key to the entging the service will be sufficient
to ensure compliance with regulatory and privacayfictentiality requirements and
ensure an adequate level of protection for datgestsin compliance with the

existing European legislation on data protection.

6.2 Architecture Description

There are three main technical components of tbhaeyanization service:
* The neuGRID pseudonymization library
* The Pseudonymization Web Service
* The Pseudonymization applet/stand alone application

The neuGRID pseudonymization library is a Javaalprproviding the necessary
methods required to pseudonymize DICOM images reusable form. In order to
leverage the work and reuse what has already beam the library is using an
already existing DICOM manipulation library, thena¢che?2 toolkit. dcm4che2 is a
high performance, open source implementation of INEOM standard. The
neuGRID pseudonymization library allows sharingtloé pseudonymization code
between both the Pseudonymization Web Service dmd gseudonymization
applet/standalone application ensuring that the esamoherent level of
pseudonymization is used throughout the neuGRIstfucture.

The Pseudonymization Web Service is the point ofryenn the neuGRID
infrastructure to pseudonymize and upload the imaljallows users to send images
for pseudonymization and once done, these imagedeauploaded on the GRID,
registered into LORIS and used by neuGRID users.

a7

The Pseudonymization applet/stand alone applicagi@antool that will be provided to
neuGRID's users to help them pseudonymize imagé#somti having to send the
images outside the walls of the hospital. The pseyahization applet will make full
usage of the latest Java features allowing thdioreaf an applet that can be dragged
out of a browser and that can be used outsideeobtowser's context without having
to be connected to the Internet.

To provide a web- friendly access, the followingotwteps have been planned
initially:

* The development of an applet for the pseudonynumaif images.

* The adaptation of the applet to allow it to be yfuilinctional outside of the
browser.

The data anonymization process is described throoghsteps shown in figure 30
whereas in figure 31 an overview of the Servicdagpent is shown.

6.3 Functionality and Features

The neuGRID pseudonymization Java library allows tinkeep or remove a selected
list of fields from DICOM images. The library is ing implemented into the
org.healthgrid.neuGRID.pseudonymize.Pseudonymizatielass providing the
following public methods:

boolean Pseudonymi&iring inputFile, String outputFile, int[] headenst operation)

FilelnputStream Pseudonym{&delnputStream imageStream, int[]] headers, int
operation) (not yet implemented)

boolean RemoveHeadé@comObject dcmObj, int[] headers)

ArrayList<integer> KeepHeade(BicomObject dcmObj, int[] headers) (not yet
implemented)

The pseudonymization applet will allow users taestlone or more local files and
pseudonymize them in a manner configured for the&skD needs. It will take a list
of images as input and will either output pseudomgch images into one chosen
repository or send them to the neuGRID infrastmectaccording to the user's choice.
The applet will also be handling the manual uplogfiles at the DACS level.

Due to its applet nature when new features, bugs for new pseudonymization rules
are implemented, they will be immediately availalbbe use. When running in
standalone mode the applet will have an updatétiaallowing it to update itself and
to apply automatically any possible new pseudongtion rules.

In order to be able to create a nice and resporegipdet that could live outside a
browser, the JavaFX SDK has been used. JavaFXlierg platform developed by

Sun allowing the creation of rich user interfacaslhternet applications. It is one of
the main RIA (Rich Internet Application) frameworksallows reusing any existing

Java library, and it is also capable of creatinglets that could be deployed on a
user's desktop just by dragging them from the beows

48

Data
Collection
Site

Java

- Java applet
- Standalone app.
for anonymization

- Java applet
- Upload files

O First step of anonymization will take place at the Data

O Once files have been anonymized they could either

O The Web Service will then call the LORIS Web Service.
O The LORIS Web Service will register the images.

O LORIS will do ID and Study protocol check.

Q Quality Control checks.

O Then images will be made available for processing.

Collection Site (DCS) inside the hospital, the Pseud-
onymization Java applet/stand alone application will
remove all the unwanted fields.

be burnt to a CD for a later submission to the neuGRID
architecture using an applet or be sent directly over
an Internet connection to the Pseudonymization Web
Service that is deployed in the Data Archiving and
Computing Site (DACS).

The Web Service will pseudonymize the images ac-
cording to the neuGRID parameters to ensure that no
unwanted fields are left.

The images will be stored on the GRID by the Web Ser-
vice with some strict access rights.

The Face Stripping will be handled on the GRID using
the specialized algorithms deployed by WP10.

o

Data Archiving and Computing Site

Pseudonymization Loris

Web Service Web Service
Pseudo- | :

nymization

|SToroge| |Face stripping |

Available
for
processing

i i ID & stud |Quo|it Comroll
|Imoge registration proTocoIS(/:heck Y

Figure 30: Image upload workflow

49

package Dta [{ifi Deploymert]

‘HTTP jHITES |

The DS and the DACS could be inth |
same hospital

Remote client A

DCS (Data Collection Site)

<<arfifact>> 0 <<arfifact>> il
Internet Browser = ——— e —— T ipseudnnymizatinn Applet /Stand alone app |
T

A hospital could only have one DCS 1

=
i
> |

SOAPIHTTP"_ S | = ButhD‘

|

| b

] \ a
|

|

|

I

N
|HTTP HTTPS |
IE i

DACS (Data Archiving ‘and Computing Site)
\

~

A\ J <=gtifacts» [}

el (2 e | Pipeline Service ‘* el

| ¥

e D
‘ <<grtifacts>] ‘ il

rtifact
Portal Service il

- - _)“Pseudnnimyzalinnﬂ.lplund Service

<<artifact=>
Provenance Service

S
I

|

N
| ‘ <<artifact=> (& ‘
|
|

|
|
I
|
[
LORIS |
|

e
|
GO N
<<artifact> &) Jp— [ccartifaces] !
Security Management j GLueing Service = =

<<arfifact=> &) |

e
.. Emmmmmeae. . <arfac> [}

Grid middleware

Figure 31: Overview of the Pseudonymization Serdiegloyment

The web service that is responsible for the pseymdaration at the DACS level and

for their storage for further treatments receivee DICOM files as a SOAP

attachment, in addition to a list of fields/headeand an operation that could be
“keep” or “remove”; an existing neuGRID PatientlDaynbe provided to add images
to this very specific patient. To minimize memolgnsumption on the web service
call, the images are saved in a work directory, thedoseudonymization is performed
in the working directory.

If the operation is “keep”, the web service willlphkeep the specified list of headers
and drop all the others from the attached DICOMSsfivhile ensuring to keep a valid
DICOM file by preserving required metadata. If tbhperation is “remove”, the
pseudonymization web service will remove the spettifist of headers of the file and
keep the others. At the end of this operationgbeerated neuGRID patient key (a
Universal Unique Identifier or UUID), which replacehe real Patientld, will be
returned to the client as a part of the operatiatus.

Once pseudonymized, the images will be uploadedhenGRID, with restrictive
ACLs, and the face scrambling will be performedha GRID. Then the LORIS web
service will be called in order to trigger the iggation of the images. At any time a
user will be able to connect to the web servicgdabthe status of the actual step, and
once all the steps are over, the user will getlLff of the directory containing the
files. The whole process is depicted in the seqeieirgram shown in figure 32.

50

interaction DataUpload| !ﬁﬂDatﬁUplcad]J

<<actor>> Pseud ..iLe| ‘ Pseud :(;ridnctinn| |:answs
nt T T T T
| | | |
RNl | |
oplD is stored server side | | |
| |allowing to retrieve files'
kb - — — — _ _ _ _ _ _ opiD— locationsiongoing operation. | | | |
Pseudonymize{oplD, headsrs, operation) | | | |
| | |
| | |
kb — — — — - — - — — _— __ N | | |
| Psaudonyrnlzs(\magesLn:atmn“headers‘operatmn) | |
alt | |
[operation = keep] [|
looj ‘ ‘
[each images] KeepHeaders(image, heacders) ‘ ‘
| |
| |
- - .~ _ | |
[else] | |
| |
looj | |
[each images] RemoveHsaders(image, headers) | |
| |
| |
| |
| |
result
s - - - - Bt | |
| | |
| | |
| | |
loo | | i
[while status != PseudonymizeSuccess] B
) | GetDperationStatus could be | |
GetOperationStatus(oplD) L called permanently to check the | |
— T\ status of the actual step
| |
status | | |
e — — — — — — — — — — —d
| | | |
| | | |
. T | | |
GridUpload{oplD)
| | |
| | |
=<-——— = = = = = = — — — Upload{imageslLocation) I ‘_‘ I
T |
| |
e - - _ _ _ _ _ 1 ___ _Gmfl\ehocajon_ |
| | |
| | |
FaceStrip{oplD) T I I I
| | |
| | |
e — — — — - - - — — — - — . . | | |
FaceStrip{lmagesLocation) N
f |
| |
e — — — — — — 1 _ _ _ _ _op |
| | |
| | |
| | |
on ¢ A |
| GetOperationStatus{oplD) | |
[while status = dong]
| |
| status |
e — — — — — — L _ _ _ — T
| |
| |
T | |
|
HeglgerIlnages(lmagssLocatlon] | ol
| |
| | status

GetGridFileLocation(oplD)

Figure 32: Pseudonyrﬁization Service's sequenceairag |

51

6.4 |mplementation and Environment

The pseudonymization library is a single Java clasking use of the dcm4che2
toolkit version 2.0.20. It is compiled as a jararder to easily share it between the
different actors of the pseudonymization processed class based on the jUnit unit
testing framework has also been developed to etarirary performs as intended.
The applet is implemented using JavaFX. The Jav&éupt programming language
allows using all existing Java libraries like treuGRID pseudonymization library.

The web service is developed from scratch usingpadbwn approach by firstly
writing the WSDL and secondly generating the stisbghe service using the axis2's
wsdl2java command and then implementing the webiceinterface. The upload
process is performed using MTOM attachments. The se&rvice is tested using
Axis2 1.4.2 in tomcat 6 using Java 6 on a Xen pdrtalized debian Lenny system.
A basic Java client was also developed to tesivieservice upload operation.

6.5 Issues and limitations
The service is not yet fully implemented:

» For now only the implementation of the removal disaof selected fields was
implemented into the pseudonymization library.

* The applet is in an early stage of development,raady features still have to
be added.

» The integration with the Grid environment for uglo®y the files and running
the face stripping is ongoing.

* The authentication and authorization aspects hdneady been extensively
discussed within the consortium, and the implentemtashould follow in the
near future.

Uploading a large number of DICOM images at onagdte quite challenging and
needs to be heavily tested in order to handle plessipload problems in the best
possible way. Moreover, running JavaFX requireglatively recent version of the
Sun Java runtime installed, which is JDK 6 Upd&et Windows, GNU/Linux and

Solaris and JDK 5 Update 16 on Mac OS X. The aoitkili Java FX runtimes will be
automatically deployed under GNU/Linux Windows avidc OS X environments.

6.6 Futuredirections

The next step is to complete the development of bbe Pseudonymization web
service and the applet. Once this is done, the seebice will be deployed into the
neuGRID development environment to ensure the geerietegration with the
neuGRID architecture and to be able to exhaustitedt/the service in a production-
like testbed. In order to access the Grid, the @s@ymization will have to work with
the Glueing Service. Integration with the Provema8ervice would also be required
to record the importation of images into neuGRID.

52

7. TheWay Forward

This section describes the future work that willdagried out in year 3 of neuGRID.
In the first two years of the project work has meded as scheduled. The user
requirements have been elicited and after carefalyais, components have been
identified that address particular requirementse Tbmponents have been designed,
interfaces have been defined and these componawshieen packaged into services.
The nature of services, their roles and the pravifienctionality has been clearly
specified. The design philosophy, which will guithe implementation process, has
been laid out and the associated design principla® been described. After the
design process, exhaustive investigations were ntadevaluate and identify the
technologies that can offer the functionality tistequired by these components to
address the user requirements. A list of the teloigies was prepared that can in full
or partially implements the desired features in sieevices and at the same time
missing functionality has been highlighted that cah be addressed by the available
technologies. By the end of year 1, we had madeifgignt progress towards the
WP6 objectives by having a clear roadmap for tmeices delivery.

In year 2, we built upon the previously highlightachievements and finalised the
services designs. After this, efforts were kickstd for the services implementation
and significant progress has been so far madeistrrtdmt. The Pipeline Service has
now sufficient functionality to address the usequieements. It can help users in
specifying workflows, transforming the workflowstacna common format for wider
enactment and can offer the functionality to ruesth workflows in a distributed
environment. The Glueing Service, due to its cérana important role to interact
with the Grid resources, was the second imporemnvice where most of the resources
were invested in year 2. It can now offer usersftimetionality to submit jobs to a
Grid, to read, write and browse files from Gridaesces and to monitor the jobs. It
has been integrated with LORIS. The Provenancei@eman capture and store
provenance and the querying service will be offetedhe users as soon as the
provenance data becomes available. Moreover, thlPeervice has grown into a
mature service and offers the functionality forirgke sign-on as well as providing
the CAS support to authenticate and authorise usles Anonymisation Service has
basic support to anonymise the data.

Significant progress has been made towards sedestgn and implementation,
however, the ambitious objectives that have beenns&/P6 require further major
effort that will be undertaken in year 3. We intdndelease the services in phases in
year 3 where services will be tested, integrated)ity assured and released for user
feedback. In year 3, the following activities wile performed to implement the
remaining functionality and release the services.

* In the third year, thePipeline Service will be released with the features
already described in this document. In additiontis, some additional
developments will be made. The Pipeline Servicalade coordinate results
retrieval with the Glueing Service and the ProveearfService. Current
monitoring information received from the Glueingr8ee is inadequate for
comprehensive provenance. The Glueing Service needse extended to
gather scheduling information and detailed loggasks in addition to the
output specified in the JDL. A major component loé Pipeline Service that
has yet to be implemented is the workflow planfidre issues raised in the
previous section directly have an impact on thekflow planner. Moreover,

53

for efficient planning, knowledge of the Grid eronment is required. The
information, such as how many sites are availablech replicas are present
and where different tasks have been deployedggined to efficiently plan a

workflow. The Glueing Service needs to get thioinfation from the Grid

information services. Currently such functionalisy not present in SAGA.

Hence in year 3, the issues that have been raidethevaddressed and the
workflow planner will be implemented to completee tbroposed Pipeline
Service architecture.

The Provenance Service will require a few changes in CRISTAL and a
number of additional developments to offer the dezg that are required by
the users of the project. The CRISTAL structuresuth understand the
structure of neuroimaging pipelines and scientfiarkflows in general. It
should allow users to capture, browse, reconstanct validate the pipeline
related provenance information. The current fumaly was not
implemented for scientific workflow provenance atietrefore this feature
needs to be extended to allow an improved workfsmgport. In neuGRID
each user will have separate authentication antodsation credentials.
Therefore the issues such as granularity of awghtion and synchronisation
of the CRISTAL data security with the security dg@d in the rest of
neuGRID need to be further explored. CRISTAL netil®xpose suitable
interfaces that will allow applications to make useGrid/Cloud resources
through the Glueing service. This approach will ietCRISTAL down to a
particular application or middleware platform. Therrrent schema and
database access mechanism needs to be refinedvmera fine grained
provenance storage mechanism. CORBA related depeldeneed to be
removed. The provenance information may be storedeonote databases,
which will have to be accessed through SOAP orlamprotocols and such
support is necessary in CRISTAL. The current prawee reconstruction
mechanism in CRISTAL is not sufficient to enable #tientists to reconstruct
their workflows. The reconstruction process shoh&dp in observing the
pipeline creation process, re-executing a pipedinpart of it and modifying a
pipeline and storing it with a different versiorhée developments will take
place in year 3.

The Glueing Service exposes SAGA APIs; therefore it can only providese
functions that are supported by SAGA API. The regmients are not fully
addressed in the current implementation of the iGtu8ervice because of the
lack of support for those requirements in the qur@AGA implementation.
As the Pipeline Service generates pipelines or flawis to be executed over
the Grid, it needs an enactment engine that caakhitee workflow into its
constituent parts/jobs. It also needs to resoll® dependencies and then
execute the sequence of jobs efficiently. The cirrelease of SAGA can
only submit one job at a time, through its JavaGalgptors, to a submission
system such as GridSAM. Thus it does not have stipfpo workload
management and scheduling a series/sequence ohgobsr the requirements
of workflow. This lack of workflow enactment in SAGIlimits the scope of
the Glueing Service. Thus, the Pipeline Service teals with workflows
cannot be fully supported by the Glueing Servicghat moment. We have
developed a temporary workaround for this but gglnot support reporting of
the workflow status since the gLite adaptor wagtemifor single jobs, though

54

the gLite middleware can report the status of thigree workflow as a single
job. We are currently investigating various possiblutions that will allow
the gLite adaptor to report the status of an emtwekflow, as well as retrieve
the output sandboxes for the jobs that constitutentorkflow once they have
been executed. We need to implement a single-sigrfuactionality to
facilitate users. Currently to invoke enactmenaaforkflow and access other
resources, the user's certificate, key and assocf@ssphrase are required to
initiate a proxy at the Glueing Service end. To thee model the user has to
provide all of these details every time a requesinade. To cater for this
limitation the glueing, pipeline and other servicezd to be integrated with a
Single Sign On service (SSO). This task will alsacbmpleted in year 3 when
a mature SSO API becomes available.

One of the important features of thl@uerying Service is to offer the
functionality that may enable the users to queeygtovenance data. This and
other features should be available in the reledsi@®service that is expected
by the middle of year 3. It became apparent thatQuerying Service more
than any other, depended on the designs and imptatiens of other
services. The development schedule for this semw&e therefore re-aligned
with the completion of the user requirements anglyss well as the
availability of the provenance data. This will allothe querying service
architecture to be informed by the requirementsis&rs and provide enough
time for other services to reach a level of mayubbiéfore any final decisions
are taken. In the coming months the query serviahitacture will be
implemented to allow flexible access to neuGRIDad#&n API will also be
developed forming a standard interface to the qagrservice. This process is
timed so that the resulting querying service carfutly tested before it is
integrated within the neuGRID infrastructure.

The Portal Service already offers a number of features as has bededsin
this document and is available to the project uskne service is ready to be
integrated and is waiting for portlet implementatofrom the service
providers. The technical choices that have beenermalll require more work
from the service providers as they will have tovme portlets for enabling
access to their web services. The processing ofestg is a bit slower in the
portal service and improvements are required toremddthis issue. Cache
techniques have been developed to address thiteprdiut more alternatives
are being investigated. Once the portal servigeasly, it will be moved to a
production environment. The customisation of itsmponents will be a
required step to have a best possible user experieniferay provides
facilities such as clustering, load balancing addaaced caching techniques
which will help in ensuring the robustness of tbesvice. This will likely be
achieved in the third year of the project.

The Anonymisation Service is not yet fully implemented and will require a
significant effort in the third year to implemeihtet remaining features. For
now only the removal of a list of selected fieldstbeen implemented into a
pseudonymisation library. The applet is in an eathge of development, and
a lot of features still need to be added. The magn with the Grid
environment for uploading the files and running tlaee stripping is an
ongoing process and will be implemented in yeaft& authentication and
authorisation aspects have already been extensiisiussed within the

55

consortium, and the implementation should be ablglan year 3. Uploading a
large number of DICOM images at once could be qehi@lenging and needs
to be thoroughly tested in order to handle possiplead problems in the best
possible way. The next step is to complete the ldpweent of both the
Pseudonymisation web service and the applet. Ansénds been completed,
the web service will be deployed into the neuGR&Yalopment environment
to ensure the perfect integration with the neuGRi€hitecture and to be able
to exhaustively test the service in a productit&e-liestbed. In order to access
the Grid, the Pseudonymisation Service will havevtowk with the Glueing
Service. Integration with the Provenance Servicald/@lso be required to
record the importation of images into neuGRID. Ehasvestigation and
developments will be carried out in year 3.

As the requirements arpiite clear and all the technological choices Hasen made,

it is expected that the work will be completed withihe time frame. It is also
anticipated that some additional manpower will bailable in year 3 and as a
consequence, the speed of progress should increaske better quality

implementations of the services will be made abala

56

