
 1

Grant agreement no. 211714

neuGRID

A GRID-BASED e-INFRASTRUCTURE FOR DATA ARCHIVING/
COMMUNICATION AND COMPUTATIONALLY INTENSIVE APPLICATIONS IN
THE MEDICAL SCIENCES

 Combination of Collaborative Project and Coordination and Support Action

Objective INFRA-2007-1.2.2 - Deployment of e-Infrastructures for scientific
communities

Deliverable reference number and title: D6.2 Interim service prototype report

Due date of deliverable: Month 24

Actual submission date: 31st January 2010

Start date of project: February 1st 2008 Duration: 36 months

Organisation name of lead contractor for this deliverable: P3 University of the West of
England, Bristol UK

Revision: Version 1.0 – First Draft release for Review.

Project co-funded by the European Commission within the Seventh Framework Programme (2007-
2013)
Dissemination Level
PU Public X
PP Restricted to other programme participants (including the Commission Services)
RE Restricted to a group specified by the consortium (including the Commission

Services)

CO
Confidential, only for members of the consortium (including the Commission
Services)

 2

Table of Contents

Purpose and Intended Audience of this Document ..3

Executive Summary..4

1. The Pipeline Service...7

2. The Provenance Service ...17

3. The Glueing Service ...27

4. The Querying Service...35

5. The Portal Service ..40

6. The Anonymisation Service ...47

7. The Way Forward...53

 3

Document Revision History

What To Whom
Comments Subjects

involved
Dates

1st Draft
Whole

consortium

Author to circulate the 1st draft to the whole
Consortium

AA 1/1/10

1st Draft +
comments

Author
1st review: Reviews due back to the Author.
Author to implement comments

Alex
+

David

1/10/10

2nd draft PMT
Author to circulate the 2nd draft to PMT,
Technical Supervisor and Area leaders

AA 1/13/10

2nd draft +
comments

Author
2nd review: PMT's reviews due back to the
Author. Author to implement comments

PMT 1/17/10

Final Draft PC
Author to send Final draft to the Project
Coordinator

AA 1/25/10

Final Draft +
comments

Author
Coordinator's review due back to the Author GbF 1/27/10

Deliverable CB
Coordinator’s review - Author sends final
draft to GbF

AA 1/29/10

Deliverable Commission
Submission - Final changes made and
submitted to the Commission

CB 1/30/10

Purpose and Intended Audience of this Document

D6.2 The interim service prototype report forms a public deliverable and documents
the progress achieved on the services implementation in WP6. In this workpackage
(WP), a set of generalised services is being designed and implemented that will help
the users in their analysis. WP leaders, technical users, neuGRID developers, project
managers and EC reviewers are the intended recipients of this document which may be
revisited as and when key recommendations presented in the document evolve, due to
the ongoing research and development process in the workpackage. To a lesser extent,
since the recommendations and future plans in the workpackage may impact the
decisions made on the potential use and exploitation of the project outcomes, neuro-
scientists and prospective users (e.g. Pharmaceutical industries) as well as internal and
external users of the project activities, are also anticipated as potential readers of this
deliverable.

 4

Executive Summary

The aim of the neuGRID Project is to provide a user-friendly grid-based e-
infrastructure plus a set of generalised infrastructure services that will enable the
European neuroscience community to carry out research that is necessary for the
study of degenerative brain diseases. The WP6 work-package, the provision of
Distributed Medical Services, is responsible for supplying general purpose analysis
services to the users of the project. The provision of these generalised medical
services will enable grid technologies to be applied in this and a number of other
medical domains. The services will provide the flexibility that is necessary for
interfacing with existing medical systems and will enable the reuse of packaged
services that exploit grid functionality. This work package will gradually provide an
Application Programming Interface (API) which is independent both of the
application domain and of the underlying Grid infrastructure.

In order to achieve these objectives, a requirements analysis process was carried out
to identify the group of services that are suitable for addressing the neuGRID project
objectives (as reported in D9.2 from WP9). The requirements process also helped in
identifying the functionality that these services should provide for the users of the
system. During this activity a design philosophy to drive the services design process
was produced. The design philosophy delivered a set of guidelines that services
should follow to ensure their execution and eventual composition into biomedical
applications. The WP6 deliverable document in year 1 outlined the design philosophy
that is being followed during the construction of the distributed medical services. The
deliverable also described a design for the set of services that will constitute the
distributed medical services layer. The design and evaluation process was led by user
requirements, which have been separately elicited in WP9 deliverables.

Once the project requirements had been elaborated, the next step was to map these
requirements against possible components and identify those that should be used. The
reasons for building these components as services have been presented in detail in the
design philosophy section in year 1 deliverable D6.1. The services will exist as
autonomous and loosely coupled entities that can be executed independently. Each
service will address requirements that cannot be handled by any other single
component or service. Collectively and in cooperation with each other, services will
support the user analysis process and therefore deliver a functional neuGRID system.

A group of services has been identified that is neither middleware nor application
specific. These generalised services can be used by any application and should run on
any grid middleware. We have discussed the major components and requirements that
each of these generalised services should address as well as a more detailed design for
each of these services in the year 1 deliverable D6.1. This also included architectural
considerations and the selection of the most suitable structure for each of the services.
The services design also considered the technological choices which were available
and justified why specific technologies have been selected. The design included
individual service components, API's and interfaces that will be provided to enable
interaction with other services and applications.

In year 2, efforts were made to finalise the designs of the services whose initial
specifications were submitted in the year 1 deliverable and that can best address the
user requirements. At the same time, it was ensured that the service designs are
consistent with the design principles that were presented in the year 1 deliverable. A

 5

significant effort has been invested in year 2 to implement the services. Each of these
services has an implementation roadmap that closely aligns with project commitments
and deliverable submission deadlines. The progress achieved on the service
implementation is reported in this year 2 deliverable. The following set of activities
was performed in year 2 on the design and implementation fronts:

• The design of each service was finalised. This design process not only glued
together various components, it also ensured that these components and
services can be extended as and when required. It was also ensured that
minimum dependencies existed between components and services and that
they were sufficiently scalable to cope with future demands in loads. Particular
care was taken to make these services as generalised as possible and vendor
and middleware lock-ins were avoided.

• Suitable interfaces were crafted to provide access to these services. It was
ensured that these interfaces promoted interoperability and ease-of-use.
Standard approaches were employed in designing these interfaces with the
intention that services should follow generally agreed standards to the greatest
possible extent in order to make them widely exploitable.

• This deliverable document highlights the progress that has been achieved on
each of the services. This document also touches upon the important features
that each of the services offers as well as technical limitations that were faced
in implementing the proposed services designs. The service descriptions also
include the work that will be carried out in the third year of the project. The
details have also been provided regarding the use of interfaces, technologies
and about the implementation as well as the deployment environment used in
these services. Any missing functionality is described and a roadmap for
implementing and delivering the remaining functionality has also been set out.

A summary on the status of the services is presented in the following section. The
detailed services reports can be found in the respective sections in this document.

a. Pipeline Service: The role of the Pipeline Service is to enable the users
to create and design workflows in a user-friendly fashion in a workflow authoring
environment of their choice. The current implementation of the Pipeline Service
consists of the following implemented features: 1) A fully defined web service
interface of the Pipeline Service; 2) An implemented translation component that
supports translations both for the LONI Pipeline, and translation to JDL for gLite
Submission; 3) An enactor that uses an extended gLite-adaptor for the Glueing
Service for submission to the grid.

b. Glueing Service: All the generalised services in neuGRID will access
distributed resources through a Glueing service. This service will provide an
abstraction layer through which users can access data and other resources without
lock-in to a particular middleware. The current implementation of the service
encapsulates the following functionality: 1) Job Submission; 2) File Management
(reading, writing, directory listing, getting file size); 3) Job Monitoring; 4) User
Authentication and 5) LORIS Integration.

c. Provenance Service: The Provenance Service will capture, store and
perform analysis on the data for improved decision making. The following
features are available as a consequence of the CRISTAL adoption as the
provenance management tool: 1) Provenance capturing from pipelines; 2)

 6

Provenance data storage in files; 3) Workflow life cycle management and 4)
Mechanism to store user specific provenance.

d. Querying Service: The Querying Service will be a generalised service
that can query and browse data that is stored in a file or relational database or in
other Grid databases. Due to the dependence on provenance service and LORIS
API’s, the querying service is not yet available for use, however, the following
progress has been made: 1) The service design is finalized; 2) Technology
evaluations are complete and 3) Interfaces have been defined.

e. Portal Service: The Portal Service will be a point of entry to the
system and all other services will be accessed through this service. This service
will also hide the low-level service interfaces and implementation details from
common users. The following components are available in the portal service: 1)
The Single Sign-On (SSO) system based on the Central Authentication Server
(CAS); 2) The dashboard (menu) and 3) The neuGRID JSR286/WSRP 2.0
compliant portal.

f. Anonymisation Service: Biomedical data needs to be anonymised and
should be shared after ethical and legal clearance. The anonymisation service will
ensure this before the users can access biomedical data for their analysis. The
following components are available in the anonymisation service: 1) The
pseudonymisation library; 2) The Pseudonymisation Web Service and 3.) The
Pseudonymisation applet/stand alone application.

The deliverable document concludes with a roadmap for the third year which is
presented in the “way forward” section.

As discussed in the design document, user requirements may evolve and new sets of
features may need to be added. Consequently, service designs and the functionality
offered may also evolve and provision has been made in the designs to address
potential future changes in functionality. The design and implementation will
therefore be periodically reviewed and any changes and future suggestions and
recommendations will be considered. It is anticipated that most of the essential
requirements that have been identified in the user requirements analysis will be
implemented before the project concludes by the end of year 3. Service libraries as
well as documentation will be released as and when available according to the project
plan and will be integrated with the rest of the project deliverables. The services will
also be demonstrated to the potential user communities and their feedback will be
used as a vehicle for service testing, improvements and production quality releases.

 7

1. The Pipeline Service

1.1 Purpose and Introduction

The neuGRID generalised medical services layer includes numerous components that
facilitate the execution of a neuroimaging pipeline on a grid infrastructure. One of the
central services enabling this is the Pipeline Service. The functionality of the Pipeline
Service is mandated by specific requirements from WP9. The role of the Pipeline
Service is to enable scientists to create and design workflows in a user-friendly
fashion in any workflow authoring environment of their choice. The Pipeline Service
will also plan and distribute the pipeline over a grid, and finally coordinate with the
Provenance Service to enable users to retrieve and query the results of the execution.
The purpose of this section is to update the stakeholders about the implementation
progress of the Pipeline Service and highlight issues and current limitations that will
be addressed in future versions.

1.2 Architecture

The components of the Pipeline Service are outlined in Figure 1. The interaction starts
with the authoring of a pipeline, which the user wants to execute on the Grid.
Authoring can be done in numerous tools. LONI Pipeline is a popular neuroimaging
pipeline authoring environment that is supported by the Pipeline Service. The Pipeline
Service implements flexible interfaces for integrating any suitable authoring
environment (described in more detail in section 3.2).

Figure 1: Pipeline Service Architecture

After authoring the pipeline, the user invokes its submission to the Pipeline Service.
Upon submission several things occur: first the authored pipeline that is represented in
a native format to the authoring environment is translated into a common objected-
oriented workflow model. A draft specification of this model was presented in the
year 1 deliverable document D6.1. This representation has been expanded to
accommodate further use cases and support other workflow paradigms such as
service-based workflows. A full specification of the object-oriented workflow
language is presented in section 3.2. After workflow translation, the workflow is
planned for the execution. In workflow planning the abstract user specified workflow

 8

is transformed into a concrete executable workflow. The workflow structure may also
be modified for more efficient execution in the grid.

Workflow enactment is the final stage in the Pipeline Service. The Pipeline Service
submits the planned workflow to the Grid via the Glueing Service. The Glueing
Service abstracts all interactions between WP6 Services and the underlying Grid
middleware. In the case of the Pipeline Service, the functionality that enables
submission of a workflow to the grid and workflow monitoring capabilities are used
primarily. Once a workflow has been executed, the Pipeline Service invokes the
Provenance Service to initiate the retrieval of the provenance information and the
output of the workflow. The user can then query the results through the Querying
Service.

1.3 Current Implementation

The current implementation of the Pipeline Service consists of the following
implemented features.

• A fully defined webservice interface of the Pipeline Service.
• Implemented translation component that supports translations for both LONI

Pipeline, and translation to JDL for gLite Submission.
• Enactor that uses an extended gLite-adaptor for the Glueing Service for

submission to the grid.

Each implemented feature will be described in detail in the subsequent sections.

1.3.1 Web Service Interface

According to the WP6 design philosophy the Pipeline Service has been designed
around a Service Oriented Architecture (SOA). A preliminary draft Web Service
interface has been presented in the Year 1 WP6 design deliverable D6.1. This
interface has been enhanced in response to the feedback from project partners. The
webservice binding enables clients to interact with the Pipeline Service and perform
various functions such as submission of workflows, tracking progress and various
control functions. There are essentially four types of methods supported in the
Pipeline Service. Submission methods expose functionality that enables a user to
submit a workflow. Workflow Control methods expose functionality that enable
interaction with currently executing workflows. The Pipeline Service Initialisation
method is invoked to initialise a session with the Pipeline Service. Finally the Pipeline
Service Internal methods are methods that enable interaction with internal
components of the Pipeline Service. Specific parameters are required for various
Pipeline Service methods. The following four parameters are generally used:
SessionID, Workflow, UserCredentials and WorkflowID. The SessionID denotes the
identifier used internally by the Pipeline Service to identity a specific user session.
The Workflow argument denotes the actual workflow submitted by the user. The
userCredentials argument denotes a credential provided by the user to identify the
user. The WorkflowID argument used in the Workflow Control methods is the
middleware-specific unique identifier for the workflow.

The Pipeline Service API methods are as follows. Details of each method are
provided in subsequent sections.

 9

Submission Methods
• batch_submit(SessionID, Workflow)
• int_submit(SessionID, Workflow)

Workflow Control Methods
• cancelWorkflow(SessionID, userCredentials), cancelWorkflow(WorkflowID)
• getStatus(SessionID, userCredentials), getStatus(WorkflowID)
• getWorkflowOutput(SessionID,userCredentials),

getWorkflowOutput(WorflowID)

Pipeline Service Initialization Method
• initSession(UserCredentials)

Pipeline Service Internal Methods
• getWorkflow(SessionID, userCredentials), getWorkflow(SessionID)
• translateWorkflow(workflowType, sessionID)
• planWorkflow(planner, Workflow, sessionID)
• submitToGS(workflow, sessionID)

1.3.1.1 Submission Methods

Two submission functions are provided as part of the Pipeline Service. One submit
function, batch_submit, is provided for submission of workflows which are not
interactively monitored. While int_submit is provided for interactively monitored
workflows, such as those created from an authoring environment e.g. the LONI
Pipeline. Both functions take a sessionID, which maps a particular user to the
submitted workflow and a workflow specification is provided as a SOAP attachment.

1. batch_submit(SessionID, Workflow) Method
The batch_submit function is provided for submitting workflows which are compute
and data intensive. These workflows will take a considerable amount of time to
execute, hence users may not track the progress of the workflow interactively. To
optimize the execution of these compute and data intensive workflows the Pipeline
Service will use the workflow planner. The Pipeline Service will also manage the
transfer of the output and logging information of the workflow to the Provenance
store for later querying and analysis.

The sequence chart is shown in Figure 2.

Steps 1-3: Users first create a new session which uniquely identifies the workflow the
user is submitting. A new session is created by the initSession(UserCredentials)
function. The UserCredentials argument is provided by the User and will map a
specific user to the submitted workflow. UserCredentials will also be the primary
means of authentication in order to authorize use of the Pipeline Service.

Steps 4-6: The PS Controller is a component of the Pipeline Service that will
orchestrate all activities required on behalf of users. The PS Controller will export the
Pipeline Service API via a webservice binding. The Pipeline Service will support
numerous workflow formats. The Translation Component is provided in order to
convert supported formats into a common standard format. The components within
the Pipeline Service will operate on the standard format.

 10

Figure 2: Sequence Diagram for submit Function

Steps 7-8: After the workflow has been converted into a common format, the PS
controller forwards the workflow to the Planner for optimization.

Steps 9-10: After receiving the planned workflow from the Planner, the PS Controller
submits the workflow to the Glueing Service via an embedded Glueing Service client.
The need for a planner and the role it will play in optimizing the workflows has been
discussed in D6.1. The Glueing Service will take the workflow and through
appropriate adaptors convert it into a middleware specific format e.g. JDL in gLite.
The Glueing Service will return a middleware specific workflow identifier which will
be used to track the progress of the workflow and retrieve output upon completion.

2. int_submit(SessionID, Workflow) Method
The int_submit function is provided for submitting workflows though GUI authoring
and submission environments such as the LONI Pipeline. GUI authoring and
submission environments provide mechanisms for users to author workflows, to
submit them and to track progress interactively. Due to continuous monitoring of the
workflow there are some differences in the functionality of this method compared to
batch_submit. GUI environments will be primarily used to create new workflows or
customize existing ones and execute them to determine their behaviour. GUI
environments will also be used to debug existing workflows. The workflow author
will determine the workflow correctness by checking the output of each stage of the
workflow execution, and in case of errors check the logs to determine errors. For this
reason the workflow planner is not used in the int_submit function. The Workflow
Planner, due to its optimization strategies, may change the workflow structure and
may eliminate the execution of certain tasks based on data availability. This
optimization may disrupt the workflow authoring process. To author a new workflow
or correct existing ones, the workflow that is executed on a Grid, should be identical
to the workflow that was authored. Once the workflow is deemed to be complete and
frozen, then workflow optimization can be applied through the submit function.

The sequence chart is shown in Figure 3.

 11

Figure 3: Sequence Diagram from int_submit Function

Steps 1-4: Users first author a workflow in the environment and invoke submission.
The Workflow authoring environment will first register a new sessionID from the
Pipeline Service.

Steps 5-11: The authoring environment submits the workflow to the Pipeline Service
with the int_submit function. The Pipeline Service at first translates the workflow
definition into a common format and then submits the workflow without planning to
the Glueing Service. The Glueing Service forwards it to the appropriate middleware
adaptor and returns a middleware specific workflow identifier. This identifier is stored
within the Pipeline Service and returned to the authoring environment.

Steps 12-14: The authoring environment tracks the progress of the workflow through
the getStatus(WorkflowID) method. The getStatus method will invoke the appropriate
SAGA monitoring functions, which will in turn invoke the middleware specific job
status mechanism e.g. gLite-wms-job-status and gLite-wms-job-get-logging-info in
gLite. Once the job is complete the authoring environment will quit monitoring.

Step 15-19: Once the job is complete, users can specify a server to which the output
of the workflow is to be transferred. This request is forwarded to the Glueing Service
which then uses middleware specific mechanism to transfer workflow output e.g.
gLite-wms-job-output in gLite.

1.3.1.2 Workflow Control Methods

The Pipeline Service provides numerous workflow control methods which enable the
following.

1. Cancel a workflow
2. Get status of a running workflow
3. Retrieve output of a workflow

 12

One thing to note about these functions is that two variants of the methods are
provided. One class of functions takes the workflowID as argument, while the other
takes both the sessionID and the userCredentials as argument. The (sessionID,
userCredentials) functions are designed to be used when users use the Pipeline
Service in multiple sessions. For instance users can submit workflows through the
batch_submit function, and after some time may want to determine the status of a
workflow and retrieve the output once it has been completed. In this scenario the
users will provide sessionID of the workflow session and userCredentials argument.
The Pipeline Service will retrieve the workflowID form the PS store and contact the
Glueing Service to retrieve the appropriate information. The workflowID functions are
designed to be used in a single continuous session.

1.3.1.3 Pipeline Service Initialization Method

The initSession method is the basic method used to initiate a new session with the
Pipeline Service. The identifier returned is a unique ID.

1.3.1.4 Pipeline Service Internal Methods

The Pipeline Service Internal Functions are a set of functions which are used
internally by the Pipeline Service, but an external webservice binding is provided in
order to give the Pipeline Service an open architecture. For instance
translateWorkflow, planWorkflow and submitToGS are functions which are used by
the PS controller to orchestrate the workflow translation, planning and submission of
a Workflow respectively. These functions are exposed to enable simplified and open
usage of the Pipeline Service. For instance, if a user has an appropriately planned
workflow there is no need for the user to use the batch or interactive submit functions
rather the user can directly call the submitToGS function to submit the workflow
directly to the Glueing Service. Similarly if the user wants to determine how a
workflow will be planned, the user can call the planWorkflow function and review the
planned workflow.

Another design consideration for exposing these functions is that developers can
customize the way they use the Pipeline Service. A developer can create his own PS
client which invokes the Translation Component but uses a third party workflow
planner and then submits the output of the planner to the Glueing Service.

1.3.2 Translation Component

The Pipeline Service is designed to support multiple workflow specification formats.
For this purpose an object-oriented workflow API has been designed. The objective of
the API is to enable the translation of the most common workflow formats to a
common format which the Pipeline Service components can interact with. A draft of
the API was presented in Year 1 deliverable document D6.1. However in response to
partner feedback the API has been extended to support Web Service workflows as
well. The Web Service workflow extension as of yet is incomplete and the task API is
being developed and implemented. This section proceeds as follows. The workflow
API is depicted in Figure 4 and described subsequently. Dynamic instantiation of
appropriate translators during the runtime of the Pipeline Service is essential to
support such an API. Hence the mechanism used in the Pipeline Service is described
in section 3.2.2. This section also describes how new translators can be created for the
Pipeline Service.

 13

1.3.2.1 Objected Oriented Workflow Representation

The Translation component implements an API which allows the translation of
various workflow specification formats to a common format. The component will be
designed to convert a workflow description to a common format used within the
Pipeline Service. The following is a description of the classes of the Translation
component. The class diagram is shown in Figure 6.

1. Activity Abstract Class
 This class represents all the entities that are manipulated inside a Workflow.

Figure 4: Class Diagram of the Translation API

2.WebService Class (Extends Activity)

This Class contains everything that is needed to represent a WebService

3. Task Class (Extends Activity)

The Task Class contains properties that define an executable task in a Workflow. It
contains properties that represent Executable Information, Logging Information, Input
Data information, Output Data Information, Architecture specific information, Job
Type, Task Arguments, OS environment, Task Requirements, and Priority of the job.

It is important to note that not all workflow specifications record all of these
properties. However, for LONI Workflows, some properties are recorded that are not
represented in this class. For this the Task class can be inherited and extended in a sub
class. This has been done for the LONI Adaptor.

4. Workflow Class

The Workflow class is the class which defines the structure of the workflow
representation within the Translation component. The Workflow class contains
properties that enable the declaration of Dependencies and the activities in the
workflow.

5. Dependency Class

The Dependency class defines a structure for declaring a dependency. The basic
properties in this class include an ActivityID property which defines the ID of the task

 14

concerned. The other property is the dependencies property which is a vector of
ActivityID, which enumerates all IDs of activities which have a dependency
relationship with the activity.

1.3.2.2 Dynamic Instantiation of Translators

Once a workflow has been submitted to the Pipeline Service, the PipelineController is
instantiated to manage the entire life-cycle of the workflow within the Pipeline
Service. As depicted in figure 1, the first stage of a submitted workflow is the
workflow translation. As can be seen in Figure 5, the Translator is invoked by calling
the method translate with parameters sessionID and workflowType. As previously
mentioned the sessionID identifies the user's session. The workflowType identifies the
format of the workflow. The Pipeline Service maintains an internal storage where it
stores users sessions and the corresponding workflows submitted. The internal storage
is also used to store translated workflows as well as the XML marshalled object-
oriented representation of a workflow. In the UML activity diagrams presented in
figure 2 and 3, this storage is termed as PS Store. As can be seen in figure 5, the
PSStoreWrapper class encapsulates interaction with the storage in the current
implementation.

Figure 5: Class Diagram of the Translator

As depicted in figure 5, the translator dynamically instantiates an appropriate
translator based on the workflow type. To enable dynamic instantiation of an
appropriate translator, specific interfaces have been designed to format specific
workflows. Each adaptor implements a specific Service Provider Interface (SPI). The
Translator package provides two adaptors interfaces InputAdaptorSPI and
OutputAdaptorSPI. The InputAdaptorSPI defines the interfaces that an adaptor must
follow to support translation from a native workflow format to the Pipeline Service
object-oriented workflow format. OutputAdaptorSPI defines the interfaces that must
be implemented to provide translation from the workflow object-oriented format to a
specific format for submission.

Besides following a specific protocol, the translation package must be registered with
the Pipeline Service. This is currently handled by providing a line identifying a
Translator to a specific package. Once a translator is registered with the Pipeline

 15

Service and follows the appropriate interface, it can be dynamically instantiated by
the Pipeline Service.

1.3.2.3 Process for adding a new translator

There are two steps required to create a translator for the Pipeline Service.

1. Implement the Input/OutputAdaptorSPI

The InputAdaptorSPI and OutputAdaptorSPI provide interfaces that need to be
implemented to convert a workflow from a native format to the Object Oriented
format (in case of InputAdaptorSPI) and from an object oriented format to a format
for submission (in case of OutputAdaptorSPI).

2. The translator must be registered with the Pipeline Service. The Pipeline
service uses the PSConfig.xml file to look for available translators.

1.3.3 Enactor

The current implementation of the Enactor submits the JDL to a specifically extended
adaptor for the gLite middleware. The Pipeline Service enactor is responsible for the
submission of a workflow to the grid infrastructure. The workflow received by the
enactor is a concretely planned and transformed. Currently workflow planning is not
implemented in the Pipeline Service and is a future task. As depicted in figure 6, the
enactor uses a SAGA-based client to invoke the UWESOAPAdaptor. All interactions
with the Glueing Service are abstracted through the UWESOAPAdaptor at the
Pipeline Service Side. The UWESOAPAdaptor forwards translated SAGA requests in
a SOAP format and invokes the Glueing Service. The Glueing Service uses the gLite-
adaptor to submit workflows to a gLite-based Grid infrastructure. The gLite-adaptor
initiates a user proxy and submits the workflow to glite-WMS.

Figure 6: Enactor Architecture

To facilitate this process, the Pipeline Service provides the following parameters to
the adaptor, however, once the system is integrated with the system-wide single-sign
on, this should not be required. This is mentioned in the subsequent section titled
“Integration with Single Sign On”.

 16

1. Grid Infrastructure Specific: VO Name, VO Host DN, VOMS Server URL, VOMS
Server Port

2. User specific: User Certificate, User Key, User Passphrase

1.4 Issues and Limitations

The current issues facing the Pipeline Service are highlighted in this section.

1. Glueing Service Specific Considerations

The Pipeline Service needs to coordinate the results retrieval with the Glueing Service
and the Provenance Service. Current monitoring information received from the
Glueing Service is inadequate for comprehensive Provenance. The Glueing Service
needs to be extended to gather scheduling information, detailed logs of tasks in
addition to the output specified in the JDL. Additionally to support interactive
monitoring of tasks in the Pipeline Service, the Glueing Service needs to be extended
to enable monitoring of individual tasks in a workflow.

2. Integration with Single Sign On

Currently to invoke enactment of a workflow, the user's certificate, key and associated
passphrase are required to initiate a proxy at the Glueing Service end. To use this
model the user has to provide all of these details every time a submission is invoked.
To cater for this limitation the Pipeline Service needs to be integrated with a Single
Sign On service.

3. Integration with the Grid Information Services

Currently workflow planning is not implemented, however for efficient planning
knowledge of the Grid environment is required. The information, such as how many
sites are available, which replicas are present and where different tasks have been
deployed, is required to efficiently plan a workflow. The Glueing Service needs to get
this information from the Grid information services. Currently such functionality is
not present in SAGA.

1.5 Future directions

A major component of the Pipeline Service that has yet to be implemented is the
workflow planner. The issues raised in the previous sections directly have an impact
on the workflow planner. Hence in year 3, the issues that have been raised will be
addressed and the workflow planner will be implemented to complete the proposed
Pipeline Service architecture.

 17

2. The Provenance Service

2.1 Introduction

A scientific workflow is a formal specification of a scientific process, which
represents, streamlines, and automates the steps from dataset selection and
integration, computation and analysis, to final data product presentation and
visualization. A workflow management system supports the specification, execution,
re-run, and monitoring of scientific processes. Such workflow processes have a level
of complexity that may lead to human error, which cumulatively have a large impact
on the validity of the results that are produced. Researchers therefore require a means
of tracking the execution of given workflows so they can ensure that important results
are accurate. Currently this is carried out manually before research is released to the
wider community and is published.

The neuGRID provenance service is primarily intended to capture and provide the
information that is necessary during this process. The provenance service will keep
track of the origins of the data and its evolution between different stages and services.
Provenance metadata captures the derivation history of a data product, including the
original data sources, intermediate data products, and the steps that were applied to
produce the data product. The provenance service will allow users to query analysis
information, to regenerate analysis workflows, to detect errors and unusual behaviours
in past analyses and to validate analyses. The service will support and enable the
continuous fine-tuning and refinement of the pipelines in the neuGRID project by
capturing:

1. Workflow specifications.
2. Data or inputs supplied to each workflow component.
3. Annotations added to the workflow and individual workflow components.
4. Links and dependencies between workflow components.
5. Execution errors generated during analysis.
6. Output produced by the workflow and each workflow component.

In the past few years UWE has been working with partners from CERN and CNRS,
France to develop a data and workflow tracking (i.e. provenance) system entitled
CRISTAL which is now being used to track the construction of large-scale
experiments at the CERN Large Hadron Collider (LHC). The M1i company is
currently working with UWE to transfer CRISTAL technology to regional French
companies under the product name of Agilium, for the purpose of supporting business
process management (BPM) and the integration and co-operation of multiple
processes especially in business-to-business applications. In essence
CRISTAL/Agilium is being developed as a business process modelling and
provenance capture tool. The product addresses the harmonisation of business
processes by the use of the CRISTAL kernel so that multiple potentially
heterogeneous processes can be integrated with each other and have their workflows
tracked in the database. Using the facilities for description and dynamic modification
in CRISTAL in a generalised and reusable manner, Agilium is able to provide
modifiable and reconfigurable business process workflows. It uses the so-called
description-driven nature of the CRISTAL models to act dynamically on process
instances already running and can thus intervene in the actual process instances during
execution. These processes can be dynamically (re-)configured based on the context
of execution without compiling, stopping or starting the process and the user can

 18

make modifications directly and graphically of any process parameter, while
preserving all historical versions so they can run alongside the new. In the provenance
service, thorough investigations have helped us to use CRISTAL to provide the
provenance needed to support neuroscience analyses and to track individualised
analysis definitions and usage patterns thereby creating a knowledge base for
neuroscience researchers.

2.2 CRISTAL Based Provenance Service Architecture

This section describes how CRISTAL will fit into the overall neuGRID architecture to
capture and coordinate provenance data. The subsequent sections explain the
implementation details of CRISTAL and highlight how provenance is captured,
modelled, stored and tracked through the course of an analysis.

Figure 7: The neuGRID Services without provenance support

As shown in figure 7, the interaction starts with the authoring of a pipeline
(workflows are called pipelines in the context of the neuGRID project), which the
user wants to execute on the Grid (1). Authoring can be carried out via several tools,
the prototype being implemented in neuGRID, uses Kepler and the LONI Pipeline as
examples of authoring environments. The pipeline architecture is flexible and any
suitable authoring environment can be accommodated. After authoring the pipeline,
the user invokes the submission of the pipeline (2). In this case, several things happen:
first the authored pipeline, which is represented in a Modelling Markup Language
(MoML) format (in the case of Kepler) or in LONI Pipeline XML (in the case of
LONI) is transformed into a simple XML based workflow format, which is passed to
the Pipeline Service (3). This then translates the specification into a workflow object,
via an API, which will be provided as part of the Pipeline Service. The workflow
object is translated into a DAX file, via the Pegasus DAX API. Pegasus is used as a
workflow-planning tool in this environment. The DAX file represents the abstract
workflow that the user has defined. Using the resources information that is available
in a distributed infrastructure (in neuGRID’s case, a glite based infrastructure)
Pegasus plans the workflow into a concrete executable workflow. The following
operations are carried out by Pegasus on the workflow:

 19

• Tasks are mapped to individual computing resources, depending on
availability of task actors and/or study set replicas or partial workflow
outputs.

• Portions of the workflow are mapped to specific computing resources,
depending on the computing platforms and computing resources provided by
the sites.

• The workflow specification is enhanced by including data staging actors to
stage data between computational sites.

• The workflow specification is enriched by including provenance actors for
provenance collection.

Figure 8: The neuGRID Services with provenance support

The Pipeline Service translates the workflow specification into a standard format and
plans the workflow. The planned workflow, as shown in figure 8, is forwarded to the
CRISTAL enabled provenance service which then creates an internal representation
of this workflow and stores the workflow specification into its schema. This schema
has sufficient information to track the workflow during subsequent phases of a
workflow execution. The workflow activity is represented as a tree like structure and
all associated dependencies, parameters, and environment details are represented in
this tree. The schema also provides support to track the workflow evolution and the
descriptions of derived workflows and its constituent parts are related to the original
workflow activity.

The provenance service provides a provenance-aware workflow instantiation engine.
The workflow is broken into its constituent jobs and CRISTAL takes care of the jobs,
their dependencies and the order in which these should be executed to complete a
workflow. CRISTAL coordinates the whole job execution process and the jobs wait
inside the CRISTAL premises if their dependent tasks are in execution. The workflow
is instantiated in a task-by-task manner by CRISTAL. These tasks are sent to the
Glueing Service for execution in the Grid and the results and logs are retrieved to
populate a provenance structure. CRISTAL is unaware of how the actual scheduling,
task allocation and execution is carried out in the underlying Grid infrastructure. All

 20

of these operations are performed independently from CRISTAL. The information
stored in the provenance structure can be interactively queried by users.

2.3 Workflow Instantiation and Execution in CRISTAL

Figure 9 shows the proposed integration of CRISTAL with the neuGRID services
architecture in greater detail. The Pipeline Service will forward a concrete planned
Workflow in an XML format to CRISTAL. The CRISTAL wrapper is the first
component that will receive this workflow from the pipeline service and will perform
a number of actions on the workflow. In neuGRID, the wrapper will be a webservice
and will accept SOAP calls to allow compatibility and interoperability with other
neuGRID services. The wrapper will process the workflow that has been received as a
SOAP request and will populate an internal CRISTAL structure from this workflow.
The Provenance service will coordinate with the pipeline service to receive a
workflow and store the captured provenance for further tracking and analysis. Once
the workflow has been instantiated and populated in the CRISTAL structure,
CRISTAL will coordinate with the Glueing service to submit the workflow as a whole
or in parts/tasks for ultimate scheduling and execution in a Grid environment. When a
workflow or one of its tasks has been executed, the execution as well as the state logs
will be sent back to CRISTAL for provenance storage and management. CRISTAL
will also take care of the dependencies between various tasks in a workflow and
organize the information that is captured during the instantiation and execution
phases.

Figure 9: CRISTAL Architecture

The following sections describe the workflow generation, workflow coordination,
provenance tracking, provenance storage and query processing aspects of the
CRISTAL enabled provenance service. A sequence diagram of the whole process is
shown in figure 10 that describes how various components in the CRISTAL wrapper
will interact and coordinate with each other.

 21

Figure 10: Sequence Diagram for CRISTAL-Wrapper Workflow Initialization

1. The CRISTAL Wrapper will first create so-called Agent, outcome, activity and
collection descriptions of a workflow if they do not exist already. Agents in the
CRISTAL model execute activities. In the neuGRID application and in a Grid
environment in general, a compute element is directed by an agent to execute the
workflow activities. In neuGRID a single Agent will be created for each of the users.
It will take tasks and dispatch them to the Grid on behalf of the users.

To create agents in the Glueing Service, a domain specific implementation of the class
UserCodeProcess must be provided. The method runUCLogic must be overridden to
incorporate logic that would enable the submission of a job to the Glueing Service.
Another change that will be required is to override the assessStartConditions method.
In neuGRID complex and highly parallel workflows will be executed, hence each task
may have multiple start conditions that must be fulfilled before execution can
commence. The assessStartConditions method forces the Agent to do some pre-
processing before starting an Activity. This processing could be authentication,
authorisation or another form of dependency check. Some logic could be put in the
assessStartConditions that will check if all dependent jobs of this workflow have been
executed, or that a new thread should be invoked for another parallel branch.

2. After the descriptions have been generated, the Item can be instantiated through the
CreateItemFromDescription class, which initialises an item to a specific Domain Path
and creates a System Key that identifies the Item. The properties and the collections of
the Item are defined and a workflow is specified which comprises the activities that
have been previously described. In CRISTAL a workflow is modelled as a composite
activity. A workflow may consist of other composite activities. The composite
activities that are generated can be reused to create new workflows. The
CompositeActivityDef class handles the definition of a workflow.

 22

Figure 11: Workflow Execution

An item in CRISTAL is stored as a binary CORBA object. Communication with the
CORBA object is handled via an ItemProxy object. The ItemProxy object is initialised
with a CORBA IOR reference which identifies the Item in the CORBA server. Every
time a workflow is executed an event is generated which stores the outcome of the
workflow. An item will have several events in case a workflow is executed a number
of times. Workflow execution in CRISTAL is handled as shown in the sequence
diagram in Figure 11.

Figure 12: State Machine transitions for Jobs in CRISTAL

To execute a workflow a new Event is generated. The event generation initiates the
execution of the workflow by initialising an Activity Object. The Activity object at
first initialises a state machine of the workflow. The state machine tracks progress of
an Activity’s state while it is being executed. Activities can be described with a
certain number of states such as “Suspended”, “Interrupted” etc. The full set of state
transitions supported in CRISTAL is shown in figure 12. The state machine iteratively
executes activities of the workflow and events are stored at each activity state
transition. An Activity is executed when a job, which represents an activity, is pushed

 23

to its Agent. The Agent executes the activity according to its runUCLogic function.
The outcome of the activity is validated against an outcome schema that is defined at
the time of activity creation. Once the validation is successful the state machine
iterates to the next activity to execute the next job. If the validation fails the execution
of the workflow is halted.

2.4 Workflow Provenance

As previously discussed, CRISTAL generates events during the execution of a
workflow. Figure 13 shows the workflow execution mechanism from a provenance
viewpoint. The flow of recording an Activity state in CRISTAL is as follows:

1. When the Activity class initializes a state machine that executes the workflow,
at each state transition for each activity, an Event is generated and stored.
Objects are stored in a domain specific CRISTAL storage schema. The storage
and retrieval of Items is determined and modified by configuring the
ClusterStorage class. Events consist of the following attributes:

a. Name of the agent, who executed the current event
b. Role of the agent
c. Transition information
d. Name of the step for the element in the Item (workflow)
e. Path of the element in LDAP server
f. The type of the step i.e. start node of the workflow or intermediate
g. State information of the element
h. Creation date

Figure 13: Provenance Recording in CRISTAL during execution

2. If a state transition occurs and the transition was caused by the completion of
an activity, the outcome of the activity is first validated against an outcome
schema and stored upon successful validation. In case the validation fails, the
workflow execution is stopped. By querying the Events generated during the
workflow execution users can trace what went wrong during an activity
execution.

 24

3. Another item that is stored at each transition is the view. A view represents a
snapshot of the current version of the latest Event. In case a user wants to
query for the last event created by the execution of a workflow, the user
retrieves the “last” view.

4. After this step, a post recording check is performed to see if the current view
already exists. In case it exists, a new version of the view is created; otherwise
the versioning information of existing view is updated.

The recording of all events in an Item forms the history of the workflow along with
description of the Item, properties, collections and outcome schema. The history
maintenance in CRISTAL is shown in figure 14. Item objects in CRISTAL are stored
in the form of binary CORBA objects in CORBA Server. By providing a CORBA
IOR reference, a user can retrieve an object in CRISTAL’s client view. All the
description, properties, collection and outcome objects are stored in an LDAP schema.
CRISTAL uses CASTOR APIs for translating the object-oriented representations of
these objects to XML files and these files are eventually stored in OpenLDAP. In the
client view a user can retrieve these objects by providing a logical path of the LDAP
Server. As the objects are flattened into simple XML files, at the time of retrieval, it
reforms the object from XML description to present the information to users.

Figure 14: Item Structure

CRISTAL also has pluggable data storage support. This can be extended by replacing
its default storage mechanism that stores XML files that can be queried via
OpenLDAP. The key interface for this purpose is ClusterStorage. This interface uses
a configuration file to connect to different relational databases. The default
distribution uses defaultConf.properties file for creating an XML database in
OpenLDAP directory structure. ClusterStorage provides six main functions and these
functions must be overridden for using a specific database. These functions are listed
below:

• open() - initialization
• getClusterContents() – directory contents
• get()
• put()
• delete()
• query() – to expose underlying query engine

 25

Figure 15: ClusterStorage API for provenance storage and retrieval

Figure 16: Provenance Service Structure

In order to implement ClusterStorage for a domain, one must override the
ClusterStorage put, get, delete and getClusterContents methods, as shown in Figure
15. CRISTAL uses ClusterStorage to store properties, events, views, outcomes,
workflows and collections for each Item. The Item itself contains “Paths” to these
elements, which CRISTAL accesses through the ClusterStorage API. In the context
of neuGRID project, ClusterStorage interface will be wrapped by Provenance Service
APIs, which will provide extended functionality for recording and querying
provenance information. The figure 16 shows this process in detail.

 26

2.5 Future Directions

1. Integration with the pipeline service

The CRISTAL structures should understand the structure of neuroimaging
pipelines and scientific workflows in general. It should allow users to capture,
browse, reconstruct and validate the pipeline related provenance information.
The current functionality was not implemented for scientific workflow
provenance and therefore this feature needs to be extended to allow an
improved workflow support.

2. Authentication and authorization of the provenance data

In neuGRID each user will have separate authentication and authorisation
credentials. Therefore the issues such as granularity of authorisation and
synchronisation of the CRISTAL data security with the security deployed in
the rest of neuGRID need to be further explored.

3. Integration with the Glueing service

The Glueing service provides a middleware independent mechanism to access
resources and submit jobs. CRISTAL should expose suitable interfaces that
can allow applications to make use of Grid/Cloud resources through the
Glueing service. This approach will not tie CRISTAL down to a particular
application or middleware platform.

4. Provenance Schema and database

The current schema and database access mechanism needs to be refined to
provide a fine grained querying and storage mechanism. CORBA related
dependencies need to be removed. The provenance information may be stored
on remote databases, which will have to be accessed through SOAP or similar
protocols and such support is necessary in CRISTAL.

5. Provenance reconstruction

The current provenance reconstruction mechanism in CRISTAL is not
sufficient to enable the scientists to reconstruct their workflows. The
reconstruction process should help in observing the pipeline creation process,
re-executing a pipeline or part of it and modifying a pipeline and storing it
with a different version.

 27

3. The Glueing Service

3.1 Introduction

The Glueing Service is a constituent service of the generalised middleware services
layer in neuGRID, which aims to provide:

1. A standard way of accessing Grid services without tying services and
applications to a particular Grid middleware.

2. A mechanism to access any deployed Grid middleware through an easy-to-use
service.

3. A solution that extends and enhances the reusability of already developed
services across domains and applications.

4. A service-based approach to shield users and applications from writing complex
Grid-specific functionality. The user requires a minimum set of Grid-specific
APIs and the rest of the functionalities are managed by the service.

5. A simplified approach for enabling clients to interface/connect their applications
with Grid infrastructures, without installing and maintaining too many Grid
specific libraries.

3.2 Architecture

The Glueing Service exposes SAGA API functions as web service methods with a
one-to-one correspondence. The client applications can transparently access the
Glueing Service by using a SAGA SOAP adaptor, which we have named
UWESOAPAdaptor. It is an implementation of the Adaptor API provided by SAGA.
The client can include the UWESOAPAdaptor and write applications using the
standard SAGA API classes. The SAGA API calls, generated on the client side, are
passed to the Glueing Service by the UWESOAPAdaptor, which is responsible for
communicating with the Glueing Service. The Glueing Service itself is implemented
in Java and runs within a Tomcat server instance.

The UWESOAPAdaptor is a component between the client applications and the
Glueing Service. The client applications define, create and submit jobs according to
the standard specification of SAGA. These instructions are then translated into SOAP
requests by the UWESOAPAdaptor. The SOAP requests are used for communication
with the Glueing Service. The Glueing Service actually executes the client
instructions using SAGA APIs and middleware adaptors.

The UWESOAPAdaptor requires a Service Endpoint URL to communicate with the
Glueing Service. The Endpoint URL is used to access the service WSDL, which is
then used for service invocation. The WSDL describes the definition of all the
exposed methods. The UWESOAPAdaptor calls the published methods using SOAP
requests and the Glueing Service sends back SOAP responses to the
UWESOAPAdaptor. The UWESOAPAdaptor then translates the SOAP response and
returns the execution results to the client in the form of Java or SAGA specific
objects.

The following diagram (Figure 17) shows a scenario where the UWESOAPAdaptor
interacts with the Glueing Service. The UWESOAPAdaptor passes the middleware

 28

and job information to the Glueing Service using SOAP objects and the SOAP
response is sent back to the UWESOAPAdaptor from the Glueing Service. The
exposed functions of the Glueing Service are discussed in detail in section 3.

Figure 17: A sample use case

The architecture diagram (Figure 18) shows how an application contacts the Glueing
Service. The Pipeline Service, shown in the figure, is one of the potential
applications of the Glueing Service. This service uses the SAGA APIs and the
UWESOAPAdaptor to communicate with the Glueing Service. The
UWESOAPAdaptor accesses different methods of the Glueing Service by getting its
WSDL. The methods, published in the WSDL, execute the actual instructions that are
generated on the client side. Thus, the Pipeline Service initiates a grid activity that is
then forwarded to the Glueing Service by the UWESOAPAdaptor.

.

Figure 18: Glueing Service Architecture

 29

The Glueing Service, as shown in the diagram, can communicate with different Grid
middleware such as OMII/GridSAM or gLite. This allows client applications, such as
the Pipeline Service, to use Grid resources provided through different middleware.
The Glueing Service is built on Java-SAGA, which is a java implementation of
SAGA specification, and middleware specific adapters to communicate with a
particular middleware. We are also using an adaptor for javaGAT that has been
written to access the gLite middleware. The adaptor is discussed in section 3.4

3.2.1 Service Interface
The webservice interface of the Glueing Service is a set of SAGA-like methods that
are exposed to clients. The signatures of some of the exposed methods are given
below:

public String write(DataHandler dh, String fileName)

public String[] listFiles(String dir) throws Exception

public DataHandler read(String fileName)

public String runSAGA_OE(String url, String app, String args, String err, String
output)

3.3 Functionality

The current implementation of the UWESOAPAdaptor encapsulates the following
functionality:

• Job Submission

• File Management (Reading, Writing, Directory listing, Getting file size)

• Job Monitoring

• User Authentication

These are explained in detail below.

3.3.1 Job Submission

The client applications, using the UWESOAPAdaptor, pass job information to the
Glueing Service. The Glueing Service (GS) loads the appropriate middleware
adaptor, based on the site-specific server configuration. For example, if the site
administrator has configured the GS to use gLite, the GS loads the gLite adaptor by
creating a “Preferences” context for the JavaGAT adaptor. We are using the gLite
adaptor that comes with JavaGAT, as explained in section 3.7. A context is a specific
piece of information that is shared within a particular session. An application may
associate different contexts with a particular session in order to make them available
throughout the lifetime of the session and to all objects that are part of that session.

The GS tells JavaGAT to use gLite by setting the property
“ResourceBroker.adaptor.name” to “gLite” for the “Preferences” context. Once this is
done the Glueing Service creates a job, based on the job information sent by the client
application. The Glueing Service uses SAGA job management APIs for creating a
job, submitting it to the available Grid resources and retrieving its status. The SAGA
job management API covers four classes; these are JobService, JobDescription, Job
and JobSelf. These are explained below:

 30

3.3.1.1 JobService (Selecting a Resource Manager)

The JobService API is used to select a resource manager. An instance of JobService
represents a resource manager backend. A resource manager is an endpoint where the
job is submitted by the client application. This resource manager can also be an
execution service if it executes the job.
Input parameter: To create an instance of JobService class an endpoint URL of the
resource manager is required as an input parameter to createJobService method.
Example: The Glueing Service uses an endpoint URL for submitting the job to the
resource manager. For example if the resource manager is GridSAM then an instance
of JobService is created as: <JobService> js = JobFactory.createJobService (new
URL (“https://HOST:PORT/Gridsam/services/gridsam”).

3.3.1.2 JobDescription

The JobDescription API defines the job using a well defined set of attributes such as
the application executable and associate arguments. The JobDefinition attributes
behave like tags in JSDL/JDL and thus these attributes mimic JSDL for the
middleware and are passed to it internally by SAGA.
Input parameters: The JobDescription API needs two essential parameters in order to
define the job i.e. the application executable path and the exact application
parameters.
Example: If the application execution is “/bin/echo” which takes a string as input
parameter i.e. “hello” then the Glueing Service, using JobDescription, defines a job
as:
<JobDescription> jd.setAttribute (JobDescription.EXECUTABLE, “/bin/echo”) and
<JobDescription> jd.setVectorAttribute (JobDescription.ARGUMENTS, new String[]
{“hello”}).

3.3.1.3 Job (Job Creation)

The Job class represents an actual job that can be submitted to the underlying grid
middleware. An instance of the Job class can be created using JobService.createJob,
which takes an instance of the JobDescription class as an input parameter. Instances
of both JobService and JobDescription classes are pre-requisites for creating a Job.
Example: A job is created with:
<Job> j = <JobService> js.createJob (<JobDescription> jd)

The job thus created can be run with:
<Job>j.run()

3.3.2 File Management

The adaptor also supports reading and writing files to the middleware backend of the
Glueing Service. To transfer files to the Glueing Service the adaptor uses the Java
Activation Framework. This functionality is described in more detail in section 3.2.5.
Once the file has been written to a temporary location, the Glueing Service loads the
specific middleware adaptor based on the site-specific configuration, as in the case of
job creation. The file is then written to the middleware backend using the loaded
adaptor. It should be noted that because the Glueing Service is in fact a stateless web
service, writing to or reading from files in chunks cannot be supported. It would be
prohibitively expensive to provide such functionality.

 31

3.3.2.1 Writing a file

To write a file to the Glueing Service, the client first creates a File object using:
<File> f = FileFactory.createFile(path-to-file, Flags.READ.getValue())

The READ flag is important here because it tells the adaptor that the client is getting
ready to read a file and write it to the Glueing Service. Then the file is actually written
with:
<URL> u = URLFactory.createURL(path-to-file-on-GS)

f.copy(u)

f.close()

3.3.2.2 Reading a file

To read a file from the GS, the client creates a File object:
<File> f = FileFactory.createFile(path-to-file-on-GS, Flags.CREATE.getValue())
The CREATE flag tells the adaptor to create a local empty file in anticipation of the
one that will be read from the GS. The file is then read with:
<URL> u = URLFactory.createURL(local-path-to-file)
f.copy(u)
f.close()

3.3.2.3 Directory listing
The following code lists the contents of a directory:
Directory dir = FileFactory.createDirectory(session, serverDir);

System.out.println(dir.list());

dir.close();

3.3.2.4 Getting file size

To get the size of a file, a client must do the following:
File remoteFile = FileFactory.createFile(session, remoteURL,
Flags.CREATE.getValue())

System.out.println("Remote file size: " + remoteFile.getSize() + " KB")

3.3.2.5 Handling SOAP attachments

Files are transferred to the GS as SOAP attachments using Axis2J. Axis2J uses the
Java Activation Framework to handle the transfer. To upload a file to the GS, the
following interface is used:
private String uploadFile(DataHandler dh, String fileName)

The UWESOAPAdaptor uses the following code to transfer the file:
Write writer = new Write();

DataHandler dhSource = new DataHandler(new
FileDataSource(nameUrl.getPath()));

writer.setDh(dhSource);

writer.setFileName(target.getPath());

 try {

 gs.GlueingServiceStub stub = new

 32

 gs.GlueingServiceStub(sessionImpl.listContexts()

 [0].getAttribute("ServiceHost"));

 WriteResponse response = stub.write(writer);

 logger.info("Method copy returned with: " +

 response.get_return());

 }

 catch (java.lang.Exception e)

 {

 e.printStackTrace();

 throw new NoSuccessException("Unable to write file to

 server.", e);

 }

3.3.3 Job Monitoring

To monitor the execution of a job, the client must register a callback with the adaptor.
The callback class must implement the Callback interface. To register the callback:
<Job> job.addCallback(metric, callback object)

The Callback interface specifies the following method signature:
public boolean cb(Monitorable m, Metric metric, Context ctxt)

3.3.4 User Authentication

In its current implementation, the adaptor supports the gLite user authentication. An
application developer creates a “Preferences” context and passes it on to the
UWESOAPAdaptor. The context contains various settings for the gLite adaptor that it
requires to function. The some of the attributes are listed below:

• VirtualOrganisation

• vomsHostDN

• vomsServerURL

• vomsServerPort

To specify the gLite certificate, the user creates a “Certificate” context. This context
contains the following attributes:

• Context.USERCERT

• Context.USERKEY

• Context.USERPASS

Context.USERCERT and Context.USERKEY contain the locations of the user
certificate and private key respectively. The UWESOAPAdaptor uploads both these
files to a temporary location on the GS, where they are stored until the gLite adaptor
needs them. The locations of these files are then passed to the gLite adaptor for
authentication. When the adaptor no longer needs the files, they are removed from the
GS.

 33

As previously said, all this mechanism will be removed as soon as the SSO
integration will be done.

3.4 gLite Adaptor

Starting with version 1.0.1, a gLite adaptor has been introduced into the SAGA Java
implementation. This adaptor supports job submission and monitoring. However, at
the moment it only supports submission of single jobs. Since the SAGA API currently
does not support workflows, the gLite adaptor has been extended in a non-standard
way to support workflows.

We have provided extensions to the Glueing Service that will directly interact with
the JavaGAT engine for the workflow functionality. In this case we have used SAGA
for all the functionality SAGA provides, and we have extensions at the Glueing
Service level for functionality which SAGA currently does not cater for. We do not
want to break the SAGA standard, and therefore implement functionality "apart" from
SAGA at the Glueing Service level in order to implement WP6 services philosophy.
In future however, as workflow support is added to SAGA, we only need to change
the Glueing Service to migrate functionality from the JavaGAT engine to SAGA
implementation. This would not affect any other Service at all. When it will be
officially available inside SAGA, we will simply deprecate this functionality.

3.5 LORIS Integration

We are in the process of testing and integrating the UWESOAPAdaptor to the
Prodema LORIS application. In this regard, we are working closely with the LORIS
developers and initial integration and tests have been successful. Since we do not have
direct access to the LORIS source code, we have to rely on the LORIS developers to
test the adaptor functionality and provide feedback. Once the required features have
been fully tested, we plan to roll out the UWESOAPAdaptor in the neuGRID
production environment.

3.6 Limitations and Issues

The Glueing Service exposes SAGA APIs; therefore it can only provide those
functions that are supported by SAGA API. The requirements are not fully addressed
in the current implementation of the Glueing Service because of the lack of support
for those requirements in the current SAGA implementation. Some important
limitations in the implementation are discussed below:

3.6.1 Workflow Support

As the Pipeline Service generates pipelines or workflows to be executed over the
Grid, it needs an enactment engine that can break the workflow into its constituent
parts/jobs. It also needs to resolve job dependencies and then execute the sequence of
jobs efficiently. The current release of SAGA can only submit one job at a time,
through its JavaGAT adaptors, to a submission system such as GridSAM. Thus it does
not have support for workload management and scheduling a series/sequence of jobs
according to the requirements of workflow. This lack of workflow enactment in
SAGA limits the scope of the Glueing Service. Thus, the Pipeline Service that deals
with workflows cannot be fully supported by the Glueing Service at the moment. We
have developed a temporary workaround for this, as described in section 3.4. This
does not support reporting of the workflow status since the gLite adaptor was written

 34

for single jobs, although gLite reports the status of the entire workflow as a single job.
We are currently investigating various possible solutions that will allow the gLite
adaptor to report the status of the entire workflow, as well as retrieve the output
sandboxes for the jobs that constitute the workflow once they have been executed.

3.6.2 Single Sign-on

We need to implement a single-sign functionality to facilitate users. Currently to
invoke enactment of a workflow and access other resources, the user's certificate, key
and associated passphrase are required to initiate a proxy at the Glueing Service end.
To use this model the user has to provide all of these details every time a requested is
made. To cater for this limitation the glueing, pipeline and other services need to be
integrated with a Single Sign On service (SSO). This task will be achieved in year 3.

3.7 Conclusions

The Glueing Service addresses major requirements of the neuGRID project and will
provide a generalised framework for accessing resources over the Grid. The
heterogeneity of distributed resources and details of grid middleware architectures
will be transparent from users. The Glueing Service also hides complexities of
interfacing with different grid middleware, which will allow accessing grid resources
through a set of high-level functions. The service exposes SAGA APIs and can
communicate with different middleware through their middleware adaptors. Details of
middleware interactions are kept hidden from users enabling them to seamlessly use
grid functionalities. This shields the low-level middleware difficulties from the user
and will encourage them to use them with little or no knowledge. The design of the
Glueing Service is based on SOA principles, which will help different services in
neuGRID to use service functionalities through standardized interfaces. This will also
allow other client applications to use service features by inspecting its WSDL,
available online at the service endpoint URL. The SOA-based architecture of the
Glueing Service is in line with the project requirements and will provide a gateway
for all WP6 services to access grid resources.

 35

4. The Querying Service

4.1 Introduction

The user requirements analysis clearly identified that heterogeneous sources of
complex data are common in clinical research environments. The Querying Service is
therefore an important service within the generalised middleware services layer. It
will provide methods to enable the efficient querying of heterogeneous data in
neuGRID. The primary aim of the service currently is limited to allowing users to
query the data successfully. In the future we will explore the intelligence assistance to
the user during query formulation. The data as well as being heterogeneous in nature
could also be in many different formats. The Querying Service, as stated, is designed
to accommodate heterogeneous data. This includes data formats that range from
images, flat files, relational databases to XML. This service (as depicted in figure 19)
will provide a choice of ways in which the user can query the data held in neuGRID,
including:

• Create a querying service which can query disparate data resources. These
data sources, in the context of the neuGRID project, are the provenance,
LORIS and other repositories in the Grid where source as well as the analysis
data may be stored.

• Craft a solution which is platform independent and service oriented.

• Where possible create a synergy between the querying of heterogeneous data
resources and the associated metadata.

Figure 19: The Querying service will query a number of heterogeneous data
sources

 36

Year 1 deliverable D6.1 reported the work that was carried out at the early stage in the
project to analyse the initial user requirements and identify a number of potential
service models that could be implemented. Following this, a phase of prototyping and
experimentation was put in place to gather as much information as possible prior to a
final implementation strategy being created. It was felt that as the querying service
depended heavily on the designs and implementations of other services, the
development schedule for this service should be brought into alignment with the
completion of the user requirements analysis. This allows the querying service to be
tailored to better address the requirements of users and provides enough time for other
system services to reach a level of maturity before any final decisions are taken.

4.2 Draft Service Model

The design shown in figure 20 was proposed in D6.1 as the candidate model for the
Querying Service. Further experimentation and evaluation has confirmed this as a
potentially good choice although it will be evaluated in the light of the final user
requirements specification (D9.2,). Implementation details from the other services that
will use the querying service will also be used to evaluate this model.

Figure 20: A Centralised Meta-data Approach

The design that was identified in D6.1 was initially selected because of its high
availability. In this architecture, several instances are deployed simultaneously; this
means that if one of the instances fails to respond initially, the client could
automatically select a different Distributed Query Service (DQS) instance. The
quality of service therefore would likely remain unaffected by such a failure. The
distributed querying service could be instantiated multiple times and each time it is
deployed, a local instance of the meta-data database is created. Queries may be more
efficient with this architecture since each DQS holds a local instance of the meta-data.

Backup would be fairly trivial in the case of this model since the data is instantiated in
several places at any one time and a master copy could be kept somewhere and

 37

sequentially updated. Scalability is a requirement that this model well fulfils. If
querying is extremely popular and the quality of service falls below expectations, the
DQS could be deployed on another server, thereby making the data more available.

The model could be modified to provide only one instance of the DQS and a single
instance of the meta-data. This would make maintenance easier but the high
availability would be compromised and the model would not be as scalable to allow
more traffic. Load balancing could be implemented as a layer above the querying
service instances, with each service providing information to the load balancer based
on their load and speed. The client could use this information to select the best choice
(nearest querying service with the lowest load). Every time a query is submitted, it
would first pass via the load balancer which would select the optimum querying
service. The simplest way of implementing such a load balancer would likely contain
a single point of failure. Clients could however, select a default querying service
which is known to be available as a fallback in the case that the load balancer is down,
thus eliminating this issue.

In summary, the draft service model offers the following advantages and poses the
following issues.
Advantages:

· Well suited to an SOA design.
· Scalable.
· Straightforward to backup.
· High Availability

Disadvantages:

· Raises the issue of keeping the DQS instances up-to-date and consistent.
· Bandwidth is a valued resource with some institutions suffering from low levels and

these could be put under strain if each query that enters the querying service goes to
them.

4.3 Provenance Querying

Provenance querying is an important aspect of the querying service. CRISTAL
already offers partial functionality to store and query provenance and we need to
extend it so that the provenance repositories could be queried from the Querying
Service. There are primarily two ways for querying the provenance information in
CRISTAL that can be extended in the querying service.

One method is by using the querying service to directly access the database where
ClusterStorage stores all the data. The domain specific implementation can be
integrated with the neuGRID PKI based security infrastructure. To map workflows
and Items and the associated Events to a specific user credential, a property might be
introduced which holds the users Distinguished Name (DN). The details can be read
in the provenance service section. When a user with a certificate containing the
concerned DN accesses the Item, the user should be able to query and retrieve the
results. This mechanism can be further extended to incorporate access control lists
and implement fine grained authorization policies in accessing the provenance data.
This interaction is shown in the following sequence in figure 21.

 38

Figure 21: Query Processing through Provenance Service

 The second method for querying the provenance information stored in a CRISTAL
store needs a query to be sent to the particular Item. Users can communicate with
Items via an ItemProxy. The querying sequence diagram for this particular case is
shown in figure 22. In this architecture if a user desires to query for a certain set of
events during the execution of a workflow, the user will first provide his credentials to
the CRISTAL Wrapper through an appropriately defined API. The CRISTAL
wrapper query method will use the CRISTAL Gateway API declared in
com.c2kernel.process.Gateway. The Gateway API will allow the wrapper to retrieve
an Item Object based on the CORBA IOR (identifier for the Item) and initialize an
ItemProxy to communicate with the Item through the CORBA protocol. The Wrapper
will then call the queryData method on the ItemProxy to retrieve query results.

 In case the value of a certain property of the Item is to be retrieved the following
query is specified:

• /Property/[Name]

If a workflow definition is to be retrieved the following query is specified:
• /LifeCycle/workflow

If an outcome is to be retrieved that was generated at a specific event, the following
query is specified:

• /Outcome/[SchemaName]/[SchemaVersion]/[Eventid]

To retrieve an event the following query is specified:

•/AuditTrail/[Eventid]

If Job information, along with state related information is to be retrieved, the
following query is specified:

• /Job/[Jobid]

 39

Figure 22: Query processing through ClusterStorage

4.4 Conclusions and Future Directions

A service was designed that is in line with the neuGRID design philosophy. The
initial user requirements from WP9 were analysed and followed to produce a
candidate service model. D6.1 reported this work and a phase of prototyping and
experimentation followed, which allowed the gathering of information that will drive
the final service implementation strategy. It became apparent that the Querying
Service more than any other, depended on the designs and implementations of other
services. The development schedule for this service was therefore realigned with the
completion of the user requirements analysis. This will allow the querying service
architecture to be informed by the requirements of users and provides enough time for
other system services to reach a level of maturity before any final decisions are taken.
In the coming months the query service architecture will be implemented to allow
flexible access to neuGRID data. An API will also be developed forming a standard
interface to the querying service. This process is timed so that the resulting querying
service can be fully tested before it is integrated within the neuGRID infrastructure.

 40

5. The Portal Service

5.1 Introduction

The Portal Service is the single point of entry for users to access the neuGRID
services. It hides the complexity of the underlying low-level neuGRID architecture
from the users and enables them to focus on using the services' functionality. It allows
users to simply authenticate, access the services, browse the data, launch analysis and
visualise their results.

The user requirements, which have been collected by the WP9, state the following
functionalities have to be addressed by the portal service:

• Easy to use interface.

• Flexible interface that could be easily customized and reused.

• Single point of contact to access the underlying services that may be further
composed with the different low level services.

The Portal Service is based on open standards to ensure re-usability and a good level
of integration with other components. An important aspect is the federation of the
existing web applications using a Single Sign On (SSO) facility and a shared
neuGRID menu. This will provide the users a feature rich and a harmonised interface.
The creation of a dedicated portal, which will aggregate services without an overly
restrictive web interface, will enable users to add the missing building blocks to the
portal. Thus neuGRID will offer a harmonised and federated set of specialised and
dedicated interfaces to the users. It is anticipated that this will deliver a satisfactory
user experience, thereby encouraging the wider adoption of the neuGRID platform.

5.2 Architecture Description

The architecture as shown in figure 23 is made up of three principal components: the
neuGRID Single Sign-On (SSO) system, the neuGRID dashboard (menu – in orange)
and the neuGRID JSR286/WSRP 2.0 compliant portal.

Figure 23: The Portal Service architecture.

 41

A Single Sign On (SSO) system is a mechanism that allows a user to share its
authentication between different applications. One account is used to access all the
applications and one single login is required in order to access all the facilities. The
neuGRID SSO is based on CAS, the Central Authentication Server, which is a widely
used Open Source SSO implementation in Java. It has been adapted to the neuGRID
architecture, and integrated with the MyProxy service. After a successful
authentication (as shown in figure 24) CAS returns user's attributes as SAML
assertions, so that protected applications are able to get all the required information.

Figure 24: CAS Workflow

The neuGRID dashboard is a JavaScript menu that can be integrated into different
services, federated by the SSO, providing them a unified neuGRID navigation menu.
JSR 286, the Java Specification Request 286, is the Portlet specification created to
enable interoperability between Portlets, Portals and Portlet Containers. These
components allow the integration of mark up code from heterogeneous sources into a
single portal. WSRP 2.0, Web Service for Remote Portlets version 2.0, is a recent
OASIS Standard that introduces the possibility to integrate remote JSR 286 portlets
(as shown in figure 25) into a portal alongside the local portlets.

The portal will integrate both local and remote portlets to aggregate the different
features offered by the neuGRID web services. AJAX usage will limit client-server
exchange and will allow refreshing only the required part/portlet of the page that
underwent some change.

Portlets are small applications which have their presentation layer as a pluggable User
Interface component. A portlet provides a specific piece of content (information or
service). Each portlet that is present in a page produces markup to be included as a
part of the portal page. The lifecycle of the portlets is managed by the Portlet
Container which runs the portlets, providing them with a runtime environment and
handling the persistent storage of the portlets' preferences. The Portlet Container
receives request from the portal to execute requests on the portlets. A Portal, as shown

 42

in figure 26, is responsible for the aggregation of the content received from portlets
and provides facilities to authenticate users and personalize the content.

Figure 25: Overview of a JSR286/WSRP 2.0 architecture.

Figure 26: The Portal Page Creation - extracted from the Java Portlet Specification,

version 2.0

Portlets follow the Model View Controller (MVC) pattern that separates the
responsibility between a model, a view and a controller thus enforcing a clean
application design. They have multiple window modes (VIEW, HELP, EDIT), and
multiple window states (NORMAL, MAXIMIZED, MINIMIZED) accessible using
the portlet's window controls. It is also possible to hide the controls, ensuring that the
users see what the portal administrator wants them to see without being able to alter it.
With JSR 286, as shown in figure 27, it is also possible to update only single portlet
of the page.

 43

Figure 27: Request Handling Sequence - extracted from the Java Portlet Specification,
version 2.0

The chosen JSR286/WSRP 2.0 compliant portal is Liferay Community Edition portal,
which is an open source portal environment in Java. Integration with the CAS Single
Sign On facility, which is used by neuGRID, can be easily achieved as Liferay is CAS
aware. The OpenPortal Portlet Container 2.0 can also be integrated with Liferay. It's
not yet the default Portlet Container, but once selected it allows the use of its WSRP
2.0 features, either as WSRP 2.0 Producer or WSRP 2.0 Consumer. The use of
jQuery, a JavaScript based querying framework, allows creating nice and responsive
interfaces as shown in figure 28.

Figure 28: The Liferay-based neuGRID portal.

 44

The architecture offers several benefits: it is standards-based, it allows decoupling
user interface from web services and as a consequence it should be quite easily
reusable. It even allows the reuse of existing portlets. It can be used to make the
interface user-customisable and can provide users with their own set of private and
public pages.

5.3 Functionality and Features

The Official CAS support is obsolete as Liferay is still using CAS Protocol 2 whereas
neuGRID is using CAS Protocol version 3 and the SAML assertions that are
extensively used in the neuGRID SSO architecture to provide access to the users'
attributes to the different neuGRID services. It required the development of a custom
authentication handler based on the existing CAS integration, using the features
provided by Liferay. It was updated to handle the CAS 3 protocol. This step required
to create the class neuGRIDAutoLogin which implements
com.liferay.portal.security.auth.AutoLogin. This class is responsible for extracting the
user's attributes from the SAML assertion that are returned by CAS once the user has
been successfully authenticated. A Liferay user is created using these attributes if it
does not already exist into the local Liferay database. The Distinguished Name (DN)
of the user is normalized and used as the screen name.

A Liferay hook was also developed in order to be able to customise the terms of use
page. A new portal user has to accept these terms before being able to use the
neuGRID portal. The former neuGRID portal developed using Ruby On Rails has
been completely migrated to Liferay. The design has been migrated as a Liferay
theme. The neuGRID menu has been ported into a portlet including the Grid load
glowing brain that is updated using Ajax and the resource serving facility of the JSR
286. The portal is now ready to receive the neuGRID portlets.

Figure 29: The dashboard integrated with the classical LORIS frontend

 45

The neuGRID's dashboard (see figure 29), which allows to seamlessly integrate the
neuGRID menu into any web application, is also integrated with CAS. With only one
import line added to the head of the web page, it allows to easily add the neuGRID's
dashboard to any web application. The glowing brain shown in the neuGRID menu,
representing the Grid load, is dynamically updated using an AJAX query where the
server returns a JSON (JavaScript Object Notation) representation of the Grid load.
The Grid load is computed on server-side based on the information made available by
the neuGRID grid infrastructure.

Usage of the organization/community/user model in the Liferays’s portal allows
creating a clear structure representing the neuGRID architecture:

• one organisation: neuGRID

• one location/sub organization by site: KI, FBF, VUMc

• one community per project: E-ADNI, AddNeuroMed, etc

• users will belong to the main neuGRID organization and to the corresponding
location

Users are able to join and quit communities according to their interests. Joining
community is moderated using restricted communities feature. Each community
provides social tools to users (a shared calendar, a document library, a WiKi, message
boards, a blog etc). It is even possible to have one specific theme per community.
Liferays also allows the users to have their own sets of private and public pages, but
in order to keep a simple and clear portal this feature has been deactivated for now.
One portal will be deployed for the whole infrastructure with portlets allowing
querying of the services/facilities, hosted at KI, FBF and VUMc, as per the sites and
project policies. If needed WSRP 2.0 portlets could be integrated in the portal, but in
order to get as much responsiveness as possible and to ensure an easier
administration, local JSR 286 portlets are preferred. The main public part of the site is
implemented by creating pages into the default guest community. It presents the
neuGRID project and explains how to join neuGRID as a user.

The Liferay-based portal was moved to http://neugrid.healthgrid.org and replaces the
old Ruby On Rails-based portal. Despite the fact that the Liferay-based portal was
actively developed, there is still some work to be done. The user's
communities/groups have to be extracted from the CAS SAML assertion.

The custom CAS logout has to be integrated, perhaps by completing the development
of a NeuGRIDFilter class, implementing javax.servlet.Filter.Filter and allowing
handling of the Single Sign Out of both Liferay and CAS.

5.4 Implementation Details and Environment

The Liferay version used is the latest Community Edition version 5.2.3 along with the
corresponding Plugins SDK. The neuGRID Liferay portal is deployed in Tomcat 6
with a MySQL 5.0 database and is using a Sun Java 6 JDK on a debian Lenny
paravirtualized Xen host.

Historically, Liferay has to be extended using the EXT environment, which allows
modification of any part of the portal source code, but in the recent versions, the so-
called “Plugins SDK” is provided. This Plugins SDK allows development of portlets,
themes, layouts, hooks and Web Applications with a lower coupling with the main
Liferay portal source code. They are built against the Liferay API and not against the

 46

implementation classes like with the EXT environment, therefore, the neuGRID
theme is developed using the Plugins SDK. The neuGRID menu is developed as a
portlet using the Plugins SDK. The neuGRID terms of use page customization is
made using a JSP hook, allowing customization of any Liferay JSP pages bundled
with the portal, without having to use the EXT environment.

The development of the portlets/hooks/themes etc is IDE (Integrated Development
Environmet) agnostic. The Liferay team provides the ant scripts required to build and
deploy either the whole portal, the EXT environment or plugins for portlets and
themes.

5.5 Future Directions

Given the fact that it is quite a complex architecture, the processing of requests could
be a bit slower; cache techniques have been developed to address this problem. The
technical choices which have been made will also require more work from the service
providers as they will have to provide portlets for enabling access to their web
services.

Once the portal is ready, it will be moved to a production environment. The
customization of its comportments will be a required step to have the best possible
user experience. Liferay provides facilities such as clustering, load balancing and
advanced caching techniques which will help in ensuring the robustness of this
solution. This will likely be achieved before the end of the project.

 47

6. The Anonymization Service

6.1 Introduction

The purpose of the anonymization service is to facilitate the pseudonymization and
de-identification of the data that is stored within the neuGRID infrastructure. In order
to make the data available to the users for analysis, the anonymity of the patients
should be preserved.

Pseudonymization is defined by Wikipedia as "a procedure by which all person-
related data within a data record is replaced by one artificial identifier (like a hash
value) that maps one-to-one to the person. The artificial pseudonym always allows
tracking back of data to its origins which is the difference with anonymised data,
where all person-related data that could allow backtracking has been purged." The
pseudonymization process includes the checking of files to ensure that all the markers
which can provide information to identify a patient are removed before the image can
be made available. Most of the time this will be done by removing the image file's
text tags containing metadata about the patient such as name, date of birth or any
other information that could identify them.

In exceptional cases however, it may be necessary to de-anonymize the data, i.e.,
identify the subject the data originated from. In order to allow de-anonymization, a
key will be generated and stored in the PatientID tag of the files. Following multiple
discussions which occurred within the consortium, especially with WP2 colleagues, it
was concluded that returning this key to the entity using the service will be sufficient
to ensure compliance with regulatory and privacy/confidentiality requirements and
ensure an adequate level of protection for data subjects in compliance with the
existing European legislation on data protection.

6.2 Architecture Description

There are three main technical components of the anonymization service:

• The neuGRID pseudonymization library

• The Pseudonymization Web Service

• The Pseudonymization applet/stand alone application

The neuGRID pseudonymization library is a Java library providing the necessary
methods required to pseudonymize DICOM images in a reusable form. In order to
leverage the work and reuse what has already been done the library is using an
already existing DICOM manipulation library, the dcm4che2 toolkit. dcm4che2 is a
high performance, open source implementation of the DICOM standard. The
neuGRID pseudonymization library allows sharing of the pseudonymization code
between both the Pseudonymization Web Service and the pseudonymization
applet/standalone application ensuring that the same coherent level of
pseudonymization is used throughout the neuGRID infrastructure.

The Pseudonymization Web Service is the point of entry in the neuGRID
infrastructure to pseudonymize and upload the images. It allows users to send images
for pseudonymization and once done, these images can be uploaded on the GRID,
registered into LORIS and used by neuGRID users.

 48

The Pseudonymization applet/stand alone application is a tool that will be provided to
neuGRID's users to help them pseudonymize images without having to send the
images outside the walls of the hospital. The pseudonymization applet will make full
usage of the latest Java features allowing the creation of an applet that can be dragged
out of a browser and that can be used outside of the browser's context without having
to be connected to the Internet.

To provide a web- friendly access, the following two steps have been planned
initially:

• The development of an applet for the pseudonymization of images.

• The adaptation of the applet to allow it to be fully functional outside of the
browser.

The data anonymization process is described through the steps shown in figure 30
whereas in figure 31 an overview of the Service deployment is shown.

6.3 Functionality and Features

The neuGRID pseudonymization Java library allows one to keep or remove a selected
list of fields from DICOM images. The library is being implemented into the
org.healthgrid.neuGRID.pseudonymize.Pseudonymization class providing the
following public methods:

boolean Pseudonymize(String inputFile, String outputFile, int[] headers, int operation)

FileInputStream Pseudonymize(FileInputStream imageStream, int[] headers, int
operation) (not yet implemented)

boolean RemoveHeaders(DicomObject dcmObj, int[] headers)

ArrayList<Integer> KeepHeaders(DicomObject dcmObj, int[] headers) (not yet
implemented)

The pseudonymization applet will allow users to select one or more local files and
pseudonymize them in a manner configured for the neuGRID needs. It will take a list
of images as input and will either output pseudonymized images into one chosen
repository or send them to the neuGRID infrastructure according to the user's choice.
The applet will also be handling the manual upload of files at the DACS level.

Due to its applet nature when new features, bugs fixes or new pseudonymization rules
are implemented, they will be immediately available for use. When running in
standalone mode the applet will have an update facility allowing it to update itself and
to apply automatically any possible new pseudonymization rules.

In order to be able to create a nice and responsive applet that could live outside a
browser, the JavaFX SDK has been used. JavaFX is a client platform developed by
Sun allowing the creation of rich user interfaces for Internet applications. It is one of
the main RIA (Rich Internet Application) frameworks. It allows reusing any existing
Java library, and it is also capable of creating applets that could be deployed on a
user's desktop just by dragging them from the browser.

 49

Figure 30: Image upload workflow

 50

Figure 31: Overview of the Pseudonymization Service deployment

The web service that is responsible for the pseudonymization at the DACS level and
for their storage for further treatments receives the DICOM files as a SOAP
attachment, in addition to a list of fields/headers, and an operation that could be
“keep” or “remove”; an existing neuGRID PatientID may be provided to add images
to this very specific patient. To minimize memory consumption on the web service
call, the images are saved in a work directory, and the pseudonymization is performed
in the working directory.

If the operation is “keep”, the web service will only keep the specified list of headers
and drop all the others from the attached DICOM files while ensuring to keep a valid
DICOM file by preserving required metadata. If the operation is “remove”, the
pseudonymization web service will remove the specified list of headers of the file and
keep the others. At the end of this operation the generated neuGRID patient key (a
Universal Unique Identifier or UUID), which replaces the real PatientId, will be
returned to the client as a part of the operation status.

Once pseudonymized, the images will be uploaded on the GRID, with restrictive
ACLs, and the face scrambling will be performed in the GRID. Then the LORIS web
service will be called in order to trigger the registration of the images. At any time a
user will be able to connect to the web service to get the status of the actual step, and
once all the steps are over, the user will get the LFN of the directory containing the
files. The whole process is depicted in the sequence diagram shown in figure 32.

 51

Figure 32: Pseudonymization Service's sequence diagram

 52

6.4 Implementation and Environment

The pseudonymization library is a single Java class making use of the dcm4che2
toolkit version 2.0.20. It is compiled as a jar in order to easily share it between the
different actors of the pseudonymization process. A test class based on the jUnit unit
testing framework has also been developed to ensure the library performs as intended.
The applet is implemented using JavaFX. The JavaFX Script programming language
allows using all existing Java libraries like the neuGRID pseudonymization library.

The web service is developed from scratch using a top-down approach by firstly
writing the WSDL and secondly generating the stubs for the service using the axis2's
wsdl2java command and then implementing the web service interface. The upload
process is performed using MTOM attachments. The web service is tested using
Axis2 1.4.2 in tomcat 6 using Java 6 on a Xen paravirtualized debian Lenny system.
A basic Java client was also developed to test the web service upload operation.

6.5 Issues and limitations

The service is not yet fully implemented:

• For now only the implementation of the removal of a list of selected fields was
implemented into the pseudonymization library.

• The applet is in an early stage of development, and many features still have to
be added.

• The integration with the Grid environment for uploading the files and running
the face stripping is ongoing.

• The authentication and authorization aspects have already been extensively
discussed within the consortium, and the implementation should follow in the
near future.

Uploading a large number of DICOM images at once could be quite challenging and
needs to be heavily tested in order to handle possible upload problems in the best
possible way. Moreover, running JavaFX requires a relatively recent version of the
Sun Java runtime installed, which is JDK 6 Update 13 on Windows, GNU/Linux and
Solaris and JDK 5 Update 16 on Mac OS X. The additional Java FX runtimes will be
automatically deployed under GNU/Linux Windows and Mac OS X environments.

6.6 Future directions

The next step is to complete the development of both the Pseudonymization web
service and the applet. Once this is done, the web service will be deployed into the
neuGRID development environment to ensure the perfect integration with the
neuGRID architecture and to be able to exhaustively test the service in a production-
like testbed. In order to access the Grid, the Pseudonymization will have to work with
the Glueing Service. Integration with the Provenance Service would also be required
to record the importation of images into neuGRID.

 53

7. The Way Forward

This section describes the future work that will be carried out in year 3 of neuGRID.
In the first two years of the project work has proceeded as scheduled. The user
requirements have been elicited and after careful analysis, components have been
identified that address particular requirements. The components have been designed,
interfaces have been defined and these components have been packaged into services.
The nature of services, their roles and the provided functionality has been clearly
specified. The design philosophy, which will guide the implementation process, has
been laid out and the associated design principles have been described. After the
design process, exhaustive investigations were made to evaluate and identify the
technologies that can offer the functionality that is required by these components to
address the user requirements. A list of the technologies was prepared that can in full
or partially implements the desired features in the services and at the same time
missing functionality has been highlighted that can not be addressed by the available
technologies. By the end of year 1, we had made significant progress towards the
WP6 objectives by having a clear roadmap for the services delivery.

In year 2, we built upon the previously highlighted achievements and finalised the
services designs. After this, efforts were kick-started for the services implementation
and significant progress has been so far made on this front. The Pipeline Service has
now sufficient functionality to address the user requirements. It can help users in
specifying workflows, transforming the workflows into a common format for wider
enactment and can offer the functionality to run these workflows in a distributed
environment. The Glueing Service, due to its central and important role to interact
with the Grid resources, was the second important service where most of the resources
were invested in year 2. It can now offer users the functionality to submit jobs to a
Grid, to read, write and browse files from Grid resources and to monitor the jobs. It
has been integrated with LORIS. The Provenance Service can capture and store
provenance and the querying service will be offered to the users as soon as the
provenance data becomes available. Moreover, the Portal Service has grown into a
mature service and offers the functionality for a single sign-on as well as providing
the CAS support to authenticate and authorise users. The Anonymisation Service has
basic support to anonymise the data.

Significant progress has been made towards service design and implementation,
however, the ambitious objectives that have been set in WP6 require further major
effort that will be undertaken in year 3. We intend to release the services in phases in
year 3 where services will be tested, integrated, quality assured and released for user
feedback. In year 3, the following activities will be performed to implement the
remaining functionality and release the services.

• In the third year, the Pipeline Service will be released with the features
already described in this document. In addition to this, some additional
developments will be made. The Pipeline Service needs to coordinate results
retrieval with the Glueing Service and the Provenance Service. Current
monitoring information received from the Glueing Service is inadequate for
comprehensive provenance. The Glueing Service needs to be extended to
gather scheduling information and detailed logs of tasks in addition to the
output specified in the JDL. A major component of the Pipeline Service that
has yet to be implemented is the workflow planner. The issues raised in the
previous section directly have an impact on the workflow planner. Moreover,

 54

for efficient planning, knowledge of the Grid environment is required. The
information, such as how many sites are available, which replicas are present
and where different tasks have been deployed, is required to efficiently plan a
workflow. The Glueing Service needs to get this information from the Grid
information services. Currently such functionality is not present in SAGA.
Hence in year 3, the issues that have been raised will be addressed and the
workflow planner will be implemented to complete the proposed Pipeline
Service architecture.

• The Provenance Service will require a few changes in CRISTAL and a
number of additional developments to offer the features that are required by
the users of the project. The CRISTAL structures should understand the
structure of neuroimaging pipelines and scientific workflows in general. It
should allow users to capture, browse, reconstruct and validate the pipeline
related provenance information. The current functionality was not
implemented for scientific workflow provenance and therefore this feature
needs to be extended to allow an improved workflow support. In neuGRID
each user will have separate authentication and authorisation credentials.
Therefore the issues such as granularity of authorisation and synchronisation
of the CRISTAL data security with the security deployed in the rest of
neuGRID need to be further explored. CRISTAL needs to expose suitable
interfaces that will allow applications to make use of Grid/Cloud resources
through the Glueing service. This approach will not tie CRISTAL down to a
particular application or middleware platform. The current schema and
database access mechanism needs to be refined to provide a fine grained
provenance storage mechanism. CORBA related dependencies need to be
removed. The provenance information may be stored on remote databases,
which will have to be accessed through SOAP or similar protocols and such
support is necessary in CRISTAL. The current provenance reconstruction
mechanism in CRISTAL is not sufficient to enable the scientists to reconstruct
their workflows. The reconstruction process should help in observing the
pipeline creation process, re-executing a pipeline or part of it and modifying a
pipeline and storing it with a different version. These developments will take
place in year 3.

• The Glueing Service exposes SAGA APIs; therefore it can only provide those
functions that are supported by SAGA API. The requirements are not fully
addressed in the current implementation of the Glueing Service because of the
lack of support for those requirements in the current SAGA implementation.
As the Pipeline Service generates pipelines or workflows to be executed over
the Grid, it needs an enactment engine that can break the workflow into its
constituent parts/jobs. It also needs to resolve job dependencies and then
execute the sequence of jobs efficiently. The current release of SAGA can
only submit one job at a time, through its JavaGAT adaptors, to a submission
system such as GridSAM. Thus it does not have support for workload
management and scheduling a series/sequence of jobs as per the requirements
of workflow. This lack of workflow enactment in SAGA limits the scope of
the Glueing Service. Thus, the Pipeline Service that deals with workflows
cannot be fully supported by the Glueing Service at the moment. We have
developed a temporary workaround for this but it does not support reporting of
the workflow status since the gLite adaptor was written for single jobs, though

 55

the gLite middleware can report the status of the entire workflow as a single
job. We are currently investigating various possible solutions that will allow
the gLite adaptor to report the status of an entire workflow, as well as retrieve
the output sandboxes for the jobs that constitute the workflow once they have
been executed. We need to implement a single-sign on functionality to
facilitate users. Currently to invoke enactment of a workflow and access other
resources, the user's certificate, key and associated passphrase are required to
initiate a proxy at the Glueing Service end. To use this model the user has to
provide all of these details every time a request is made. To cater for this
limitation the glueing, pipeline and other services need to be integrated with a
Single Sign On service (SSO). This task will also be completed in year 3 when
a mature SSO API becomes available.

• One of the important features of the Querying Service is to offer the
functionality that may enable the users to query the provenance data. This and
other features should be available in the release of this service that is expected
by the middle of year 3. It became apparent that the Querying Service more
than any other, depended on the designs and implementations of other
services. The development schedule for this service was therefore re-aligned
with the completion of the user requirements analysis as well as the
availability of the provenance data. This will allow the querying service
architecture to be informed by the requirements of users and provide enough
time for other services to reach a level of maturity before any final decisions
are taken. In the coming months the query service architecture will be
implemented to allow flexible access to neuGRID data. An API will also be
developed forming a standard interface to the querying service. This process is
timed so that the resulting querying service can be fully tested before it is
integrated within the neuGRID infrastructure.

• The Portal Service already offers a number of features as has been stated in
this document and is available to the project users. The service is ready to be
integrated and is waiting for portlet implementations from the service
providers. The technical choices that have been made will require more work
from the service providers as they will have to provide portlets for enabling
access to their web services. The processing of requests is a bit slower in the
portal service and improvements are required to address this issue. Cache
techniques have been developed to address this problem but more alternatives
are being investigated. Once the portal service is ready, it will be moved to a
production environment. The customisation of its components will be a
required step to have a best possible user experience. Liferay provides
facilities such as clustering, load balancing and advanced caching techniques
which will help in ensuring the robustness of this service. This will likely be
achieved in the third year of the project.

• The Anonymisation Service is not yet fully implemented and will require a
significant effort in the third year to implement the remaining features. For
now only the removal of a list of selected fields has been implemented into a
pseudonymisation library. The applet is in an early stage of development, and
a lot of features still need to be added. The integration with the Grid
environment for uploading the files and running the face stripping is an
ongoing process and will be implemented in year 3. The authentication and
authorisation aspects have already been extensively discussed within the

 56

consortium, and the implementation should be available in year 3. Uploading a
large number of DICOM images at once could be quite challenging and needs
to be thoroughly tested in order to handle possible upload problems in the best
possible way. The next step is to complete the development of both the
Pseudonymisation web service and the applet. Once this has been completed,
the web service will be deployed into the neuGRID development environment
to ensure the perfect integration with the neuGRID architecture and to be able
to exhaustively test the service in a production-like testbed. In order to access
the Grid, the Pseudonymisation Service will have to work with the Glueing
Service. Integration with the Provenance Service would also be required to
record the importation of images into neuGRID. These investigation and
developments will be carried out in year 3.

As the requirements are quite clear and all the technological choices have been made,
it is expected that the work will be completed within the time frame. It is also
anticipated that some additional manpower will be available in year 3 and as a
consequence, the speed of progress should increase and better quality
implementations of the services will be made available.

