

Grant agreement no. 211714

neuGRID

A GRID-BASED e-INFRASTRUCTURE FOR DATA ARCHIVING/ COMMUNICATION AND
COMPUTATIONALLY INTENSIVE APPLICATIONS IN THE MEDICAL SCIENCES

Combination of Collaborative Project and Coordination and Support Action

Objective INFRA-2007-1.2.2 - Deployment of e-Infrastructures for scientific
communities

Deliverable reference number and title: D11.2 – ACDC2 Test Suite Specification & Report

Due date of deliverable: Month 24

Actual submission date: January 31st 2010

Start date of project: February 1st 2008 Duration: 36 months

Organisation name of lead contractor for this deliverable: maat Gknowledge

Revision: Version 1

Project co-funded by the European Commission within the Seventh Framework Programme
(2007-2013)

Dissemination Level

PU Public X

PP Restricted to other programme participants (including the Commission Services)

RE Restricted to a group specified by the consortium (including the Commission
Services)

CO Confidential, only for members of the consortium (including the Commission Services)

 2

Table of Contents

1 Introduction ..3

1.1 Purpose of the Document...3

1.2 Document Positioning and Intended Audience..3

1.3 Reference Documents..4

2 Definition of AC/DC1 Tests..5

2.1 Introduction..5

2.2 AC/DC1 Tests..6

2.2.1 Security Related..6

2.2.2 Information System: ...7

2.2.3 LCG File Catalog (LFC)...9

2.2.4 LCG Data Management (SE)... 10

2.2.5 Job Manager... 11

2.3 Conclusion .. 11

3 Definition of AC/DC2 Tests.. 12

3.1 Introduction.. 12

3.2 AC/DC2 Tests.. 13

3.2.1 The data challenge resumed in some numbers .. 13

3.2.2 The data challenge concretely launched on the GRID... 13

3.2.3 The data challenge lifetime.. 15

3.3 Conclusion .. 16

4 Conclusion... 17

5 List of Abbreviations... 18

6 ANNEXE 1: The civet-launch.sh script .. 19

 3

EXECUTIVE SUMMARY

One of the main tasks of WP11 is to define a series of validation tests to run within the neuGRID
platform, which guarantees its good performance while meeting user requirement specifications.
To do so, neuGRID has planned 3 series of Analysis Challenges and Data Challenges (AC/DC1, 2
and 3) as well as 2 series of functional tests called Story Lines (SL1 & 2). In other words, AC/DC
challenges aim to measure performances while the SL tests series validate the neuGRID services
from the user standpoint. These tests drive and influence the ongoing developments, validating
neuGRID's computing model. They are executed at first in the neuGRID PoC environment
(development test-bed) and once available, in the PROD environment throughout level 0 and level
1 centres.

This deliverable incorporates AC/DC1 (test code name "Who Made Who ") but focuses on AC/DC2
(test code name "Highway to Hell"). The latter series of tests was applied on a larger infrastructure
than the one tested in AC/DC1, with the introduction of the two first DACS sites at level 1. Tests
have been carried out between level 0 and level 1 for the sake of refining performance
measurements, therefore emphasizing on the same aspects as AC/DC1.

1 Introduction

1.1 Purpose of the Document

This document aims to illustrate how the WP11 team defined a series of validation tests to run in
the platform and report on the result of these tests. This work has been carried out the task
entitled “T11.2. Platform Performance Validation, AC/DC Test Series”, which started on month 12
and will finish on month 36 with the following objectives:

«Specification and execution of the AC/DC Test Series in the infrastructure: This includes the
provision of necessary scripting logic to trigger the tests and automate their execution in the
system. This task is led by P2 NE in close collaboration with P4 MAAT. A document will be
produced by P4 MAAT and P2 NE on M12 describing the AC/DC test series and corresponding
results, once applied to the neuGRID infrastructure »

This current deliverable already updates the D11.1 and will also be updated at M36. Based on the
acquired experience, infrastructure recommendations will be provided at the end of the project.

1.2 Document Positioning and Intended Audience

WP11 “Platform Integration, Performance and Feasibility Tests” aims (extract from the description
of work)

(1) to define a series of validation tests to run in the platform, which guaranty its well performing
against users requirement specifications (URS from WP9) (2) to define software releases frequency
and policy (3) to provide online collaborative development tools to synchronise partners
contributions (4) to setup software deployment repositories, for facilitating deployment, migrations
and maintenance (5) to define a gridification model applicable to the existing algorithms, which
satisfies the foreseen system architecture and applications’ requirements (6) to evaluate the
existing algorithms’ implementations and requirements both in terms of software and Hardware
(7) to design and implement a set of distributed and cooperative optimization methods for
facilitating algorithms gridification and their future scheduling within the infrastructure (8) to
design and implement a set of interfaces for managing the algorithms in the grid(from algorithm
publication, to versioning, to training, to sharing). (9) to gridify, deploy and test the algorithms in

 4

the grid infrastructure, (10) to define adapted scheduling policies for the selected algorithms (11)
To benchmark the algorithms execution within the platform and propose optimisations.

This document aims to focus on point (1), which means the definition of a series of tests which will
evaluate the neuGRID platform and infrastructure performance.

Thus, this document currently presents the conceived test and the results that were obtained on
the grid middleware, meaning that its priority is to serve all protagonists of the Joint Research
(JRA) and Services (SA) activities of the project, and in particular, IT researchers and IT
developers involved in the following work packages:

Services Activities – SA

WP Id WP Title WP10 Contribution
WP7 Grid Services Provision To dictate the deployment of necessary

underlying grid services and corresponding
configurations

WP8 Deployment Services Provision To dictate the deployment of necessary
underlying neuGRID services and
corresponding configurations

Joint Research Activities – JRA

WP Id WP Title WP Relation
WP9 User and System Requirements

Analysis
To conform with requirements analysis
conclusions

1.3 Reference Documents

Prior to reading this document, the reader should be familiar with additional documents/
deliverables produced within the neuGRID project, which have or are considered to potentially
have, an impact on the WP11 tasks. The following is a list of such documents sorted by
information sources, activities and corresponding work packages (Note: list of available documents
at the time of writing):

Services Activities Related Documents

WP Id WP Title Documents
WP7 Grid Services Provision D7.1. Test-bed Installation and API

Documentation
WP8 Deployment Services Provision D8.2. Ground Truth and Phase 1 & 2

Deployment Test and Validation Report

Other Related Documents

Title Documents
Project Documents Project Description of Work

 5

2 Definition of AC/DC1 Tests

2.1 Introduction

Testing the entire neuGRID gLite middleware stack in an automatic way reveals a set of problems
that WP11 has been facing.

The first work was the determination of which services will have to be tested in the neuGRID
project. The gLite middleware provides a wide range of services that may or may not be used
inside the neuGRID infrastructure. The answer to this question was found in collaboration with the
WP7 team which established the list of gLite services to deploy for the POC environment. This list
contains the following gLite services:

• VOMS

• AMGA

• LFC

• CE

• SE (equal to DPM)

• BDII (site and top)

• WMS/LB

The second work done by WP11 was determining how to test each gLite service that was installed.
Natively, the gLite middleware provides all the necessary APIs in C/C++ to interact with all the
services. It also provides a few java/Python APIs for some services. Usually, gLite is used through
what is called a "gLite User Interface" (gLite-UI): this is a suite of clients (binaries) that users and
applications can use to access the gLite services. It was obvious then to build all our tests using
this interface.

This also allows automating the procedure and generating a semi automatic set of tests, which will
rely on the use of the gLite-UI. By successfully running the gLite-UI tests we can ensure that all
the relying technology (gLite middleware) is behaving correctly.

EGEE provides a set of scripts that will perform basic tests over the desired infrastructure. After
making a study of these scripts, a selection was then performed of the scripts that are suitable for
our purposes. These have been summarized in the following section.

 6

2.2 AC/DC1 Tests

The tests have been grouped into 5 areas based on the type of service that is to be tested. This
allows for a service-oriented vision of the behaviour of the gLite middleware running in the
neuGRID infrastructure. The functionality of the different components will be analyzed with scripts
that will report on the correct or the incorrect behaviour of the component. At the end of the
script, a measure of the performance will also be provided.

The five different test areas are:

• Security services
• Information system services
• Data management services
• Job management services

In the next sections all these areas will be presented with the list of tests that will be applied on
each of them.

2.2.1 Security Related

The aim of this set of tests is to verify the correct operation of the security layer at grid
authentication level. These tests are oriented to interact with the VOMS server in the GCC. VOMS
serves as a central repository for user authorization information, providing support for sorting
users into a general group hierarchy, keeping track of their roles, etc. Its functionality may be
compared to that of a Kerberos KDC server.

o UI-security-voms-proxy-info.sh: Test voms-proxy-info with the following
options.

gLite-UI commands executed

voms-proxy-info

voms-proxy-info -all

voms-proxy-info -text

voms-proxy-info -subject

voms-proxy-info -identity

voms-proxy-info -type

voms-proxy-info –timeleft

voms-proxy-info –strength

voms-proxy-info –path

voms-proxy-info -exists -bits 256

voms-proxy-info -exists -bits 512

voms-proxy-info -exists -bits 1024

voms-proxy-info -exists -valid 1:00

voms-proxy-info -exists -valid 3:00

voms-proxy-info -exists -valid 10:00

voms-proxy-info -exists -valid 24:00

voms-proxy-info –vo

voms-proxy-info –fqan

voms-proxy-info –acissuer

 7

voms-proxy-info –actimeleft

voms-proxy-info –serial

voms-proxy-info -acexists $VO

o

o UI-security-voms-proxy-init-info-destroy.sh: Test the voms-proxy-init, voms-
proxy-info and voms-proxy-destroy chain as follows:

gLite-UI commands executed

voms-proxy-init ${VO_OPTIONS} -verify -debug –limited
-valid 1:00 -bits 1024 -out $TMPPROXY

voms-proxy-info -file $TMPPROXY

voms-proxy-destroy -file $TMPPROXY

voms-proxy-info -file $TMPPROXY

voms-proxy-destroy -file $TMPPROXY

o UI-security-voms-proxy-init-userconf.sh: This test ensures that voms-proxy-
init really uses the files given with the -userconf and -confile options.

gLite-UI commands executed

voms-proxy-init -voms testvoms -vomses $TMP_VOMS_FILE -out $TMPPROXY

voms-proxy-init -voms testvoms -userconf $TMP_VOMS_FILE -out $TMPPROXY

voms-proxy-init -debug -voms testvoms -confile $TMP_VOMS_FILE -out $TMPPROXY

2.2.2 Information System:

The aim of this set of tests is to verify the correct behaviour of the grid Information System. The
Information System (IS) provides information about the status of Grid services and available
resources. Job and data management services publish their status through the Grid Resource
Information Server (GRIS). GRIS runs on every service node and is implemented using OpenLDAP,
an open source implementation of the Lightweight Directory Access Protocol (LDAP). Every grid
site also runs one Grid Index Information Server (GIIS). The GIIS queries the service GRISes on
the site and acts as a cache storing information about all available site services. Finally, a top-level
BDII collects all information coming from site BDIIs and stores them in a cache. The top-level BDII
can be configured to collect published information from resources in all sites in a Grid (usually
derived from the GOC DB), or just from a subset of them. The site list is normally filtered to
include only sites which are currently operational, and VOs can also apply their own filters to
exclude sites which are currently failing certain critical tests, so the sites visible in a BDII may
fluctuate.

o UI-inf-lcg-info-ce.sh: Run lcg-info with --list-ce.

gLite-UI commands executed

lcg-info $VO_OPTIONS --list-ce --attr "Tag"

lcg-info $VO_OPTIONS --list-ce --attr
"OS,OSVersion,OSRelease,Processor,TotalCPUs,FreeCPUs,CEVOs"

o UI-inf-lcg-info-se.sh: Run lcg-info with --list-se.

 8

gLite-UI commands executed

lcg-info $VO_OPTIONS --list-se --attr
"SEName,SEArch,SEVOs,Path,Accesspoint,Protocol,UsedSpace,AvailableSpace"

o UI-inf-lcg-infosites.sh: Runs lcg-infosites with various options and report failures
if any.

gLite-UI commands executed

lcg-infosites --vo $VO sitename

lcg-infosites --vo $VO ce

lcg-infosites --vo $VO ce -v 2

lcg-infosites --vo $VO se

lcg-infosites --vo $VO closeSE

lcg-infosites --vo $VO tag

lcg-infosites --vo $VO lfc

lcg-infosites --vo $VO lfcLocal

lcg-infosites --vo $VO rb

lcg-infosites --vo $VO dli

lcg-infosites --vo $VO dliLocal

lcg-infosites --vo $VO vobox

lcg-infosites --vo $VO fts

o UI-inf-ldapsearch.sh: A set of ldapsearch requests with the following different
attributes.

gLite-UI commands executed

ldapsearch -x -z $SIZE_LIMIT -H $GIIS -b "mds-vo-name=local, o=grid" 'objectclass=GlueCETop' \

 GlueVOViewLocalID GlueCEStateRunningJobs GlueCEStateWaitingJobs GlueCEInfoDefaultSE

ldapsearch -x -H $GIIS -z $SIZE_LIMIT -b "mds-vo-name=local, o=grid" 'objectclass=GlueCESEBindGroup' \

 GlueCESEBindGroupCEUniqueID GlueCESEBindGroupSEUniqueID

ldapsearch -x -H $GIIS -z $SIZE_LIMIT -b "mds-vo-name=local, o=grid" 'objectclass=GlueCESEBind' \

 GlueCESEBindSEUniqueID GlueCESEBindCEAccesspoint GlueCESEBindCEUniqueID GlueCESEBindMountInfo

ldapsearch -x -H $GIIS -z $SIZE_LIMIT -b "mds-vo-name=local, o=grid" 'objectclass=GlueClusterTop' \

 GlueClusterService GlueHostOperatingSystemName GlueHostOperatingSystemRelease
GlueHostOperatingSystemVersion \

 GlueHostProcessorModel GlueHostProcessorClockSpeed GlueHostProcessorVendor

ldapsearch -x -H $GIIS -z $SIZE_LIMIT -b "mds-vo-name=local, o=grid" \

 'objectclass=GlueSite' GlueSiteLocation GlueSiteWeb GlueSiteSysAdminContact

 9

2.2.3 LCG File Catalog (LFC)

The aim of this set of tests is to verify the correct behaviour of the grid LCG File. The LFC (LCG File
Catalog) is a secure catalog containing logical to physical file mappings. In the LFC, a given file is
represented by a Grid Unique IDentifier (GUID). A given file replicated at different sites is then
considered as the same file, thanks to this GUID, but (can) appear as a unique logical entry in the
LFC catalog.

o lfc-tests-common.sh: Common functions for the UI LFC tests.

� UI-data-lfc-acl.sh: Create a directory in LFC, list ACL, modify ACL, list ACL,
delete directory.

gLite-UI commands executed

lfc-mkdir $TEST_DIR

lfc-getacl $TEST_DIR

lfc-setacl -m $NEWACL $TEST_DIR

lfc-getacl $TEST_DIR

lfc-rm -r $TEST_DIR

� UI-data-lfc-comment.sh: Create a directory in the LFC, set its comment,
list, delete comment, delete the directory.

gLite-UI commands executed

lfc-mkdir $TEST_DIR

lfc-setcomment $TEST_DIR "$COMMENT"

lfc-ls -d --comment $TEST_DIR

lfc-delcomment $TEST_DIR

lfc-ls -d --comment $TEST_DIR

lfc-rm -r $TEST_DIR

� UI-data-lfc-ln.sh: Create a directory in the LFC, make a symbolic link to it
and clean up.

gLite-UI commands executed

lfc-mkdir $TEST_DIR

lfc-ls -d -l $TEST_DIR

lfc-ln -s $TEST_DIR $LINK_NAME

lfc-ls -l $LINK_NAME

lfc-rm $LINK_NAME

lfc-rm -r $TEST_DIR

� UI-data-lfc-ls.sh: Basic test of lfc-ls.

gLite-UI commands executed

lfc-ls -d $LFC_DIR

lfc-ls -d -l $LFC_DIR

 10

lfc-ls $LFC_DIR

lfc-ls -l $LFC_DIR

� UI-data-lfc-mkdir.sh: Create a directory in LFC, list it and remove.

gLite-UI commands executed

lfc-mkdir $TEST_DIR

lfc-ls -d $TEST_DIR

lfc-ls -l -d $TEST_DIR

lfc-rm -r $TEST_DIR

2.2.4 LCG Data Management (SE)

The aim of this set of tests is to verify the correct behaviour of the gLite LCG SE / DPM. A Storage
Element provides uniform access to data storage resources; its major functionality is to securely
store data in the grid for its subsequent retrieval.

o lcg-tests-common.sh: Common functions for the UI LCG data management tests.

� UI-data-lcg-alias.sh: A test of lcg data management tools: Upload a file to
the GRID, list alias, create new alias, list again and remove.

gLite-UI commands executed

lcg-cr $VERBOSE $VO_OPTIONS -d $SE_HOST $LOCAL_FILE_URI 2>&1

lcg-la $VERBOSE $VO_OPTIONS $GUID 2>&1

lcg-aa $VERBOSE $VO_OPTIONS $GUID $ALIAS

lcg-la $VERBOSE $VO_OPTIONS $GUID

lcg-ra $VERBOSE $VO_OPTIONS $GUID $ALIAS

lcg-la $VERBOSE $VO_OPTIONS $GUID

� UI-data-lcg-cp.sh: Upload, download and remove a GRID file using lcg
data management tools.

gLite-UI commands executed

lcg-cr $VERBOSE $VO_OPTIONS -d $SE_HOST $LOCAL_FILE_URI

lcg-cp $VERBOSE $VO_OPTIONS $GUID file:$LOCAL_FILE_BACK

� UI-data-lcg-cr.sh: Create and register, and then remove, a GRID file using
lcg data management tools.

gLite-UI commands executed

lcg-cr $VERBOSE $VO_OPTIONS -d $SE_HOST $LOCAL_FILE_URI

� UI-data-lcg-list.sh: Upload a file to the GRID, list replica, list GUID for the
replica, get TURL, and delete the file using lcg data management tools.

gLite-UI commands executed

 11

lcg-cr $VERBOSE $VO_OPTIONS -d $SE_HOST $LOCAL_FILE_URI

lcg-lr $VERBOSE $VO_OPTIONS $GUID

lcg-lg $VERBOSE $VO_OPTIONS $SURL

lcg-gt $VERBOSE $SURL gsiftp

2.2.5 Job Manager

The aim of this set of tests is to verify the correct behaviour of the gLite Job Manager. The three
major components that constitute the Job Management Services group are the Computing
Element, Workload Management and Accounting. Thus, the Job Manager is the interface used to
submit Jobs to the grid.

o UI-workload-glite-wms-deleg-submit-wait-output.sh: "Delegate proxy -
submit - get status - get output" test for gLite WMS workload system

gLite-UI commands executed

glite-wms-job-delegate-proxy -d $$

glite-wms-job-submit -d $$

glite-wms-job-status

glite-wms-job-cancel --noint

glite-wms-job-output

o UI-workload-glite-wms-job-list-match.sh: A job-list-match test for the gLite-
WMS submission system.

gLite-UI commands executed

glite-wms-job-list-match -a --rank $JDLFILE

o UI-workload-glite-wms-submit-wait-output.sh: The submit - status - get
output test for gLite WMS workload system

gLite-UI commands executed

glite-wms-job-submit -a

glite-wms-job-status

glite-wms-job-cancel --noint

glite-wms-job-outp

2.3 Conclusion

This first set of tests intended to test the gLite GRID middleware that we use for the neuGRID
infrastructure at a really low level. The different grid services were grouped in five areas and
specific tests were applied to each of them.

All the results were satisfactory which means that the gLite middleware is behaving properly with
no blocking bugs that could interfere with the neuGRID developments. In the next section, more
sophisticated and resource consuming test are presented.

 12

3 Definition of AC/DC2 Tests

3.1 Introduction

This AC/DC2 test consists in a data challenge that was performed on the US-ADNI data (715
patient folders, containing in total 6'235 scans - i.e. baseline + 5 to 10 follow-ups per patient- in
MINC format, representing roughly 108 GB of data). Each scan is about 10 to 20 MB and can
contain from 150 to 250 slices.

The data challenge consisted in analysing this entire dataset - as is, i.e. no data filtering and brute
force approach - using the CIVET pipeline. To do so, two out of the three DACS (i.e.
Fatebenefratelli (FBF) and Karolinska Institute (KI)) sites have been fully deployed and equipped
with 64-bit Worker Nodes and the 64-bit version of the CIVET pipeline has been gridified and
propagated within the Production environment. The 2 DACS provide 184 processing cores, 5.3TB
of storage capacity and are connected to the GEANT2 network, thus guarantying a good network
bandwidth. The following image explains graphically the data challenge configuration.

3-1: Data Challenge configuration

The CIVET pipeline was executed with no optimization in order to maximize the number of parallel
job submissions and executions. Multiple CIVET instances will therefore be spawned in the DACS'
Worker Nodes. From our tests, CIVET-64 takes about 7 hours to process on a single scan and

 13

generates 10 times the initial data volume as output. Therefore, to analyze the US-ADNI dataset
approximately 2 weeks were necessary and almost 1 TB of output was generated.

3.2 AC/DC2 Tests

3.2.1 The data challenge resumed in some numbers

As you can see in the following table the test that was done was quite heavy. The duration was
nearly two weeks and the number of analyzed voxels1 during this period was huge (nearly 9,5
billion).

Experiment duration on the Grid < 2 Weeks

Experiment duration on single computer > 5 Years

Analyzed data Patients
 MR Scans
 Images
 Voxels

715
6’235
~1’300’000
~9’352’500’000

Total mining operations ~286’810

Mining operations throughput per hour ~1’200

Voxels operations throughput per hour ~38’970’000

Max # of processing cores in parallel 184

Number of countries involved 3 (the 2 DACS + 1 central
site in France)

Volume of output data produced 1 TB

3-2: The data challenge resumed in some numbers

What is really interesting in those numbers is also the benefit of the GRID in this kind of challenge
that can easily be observed. Indeed, if we would have launched the same experiment on a single
computer, it would have taken nearly 5 years to complete (of course we speak about a single CPU,
single core and this number highly depends on the CPU power).

3.2.2 The data challenge concretely launched on the GRID

Concretely, the data challenge consists in a job that is launched into the gLite GRID middleware.
This job is a so called “parametric” job. This kind of job is useful when you want to run similar jobs
that only differ in arguments or input/output files. Parametric job type allows you to submit bulk of

1 A voxel (volumetric pixel) is a volume element, representing a value on a regular grid in three dimensional
space. This is analogous to a pixel, which represents 2D image data in a bitmap (which is sometimes
referred to as a pixmap).

 14

jobs as a single job, and then WMS takes over, break your parametric job into many single jobs
and submit them separately to CEs on your behalf, thus significantly reducing exectution time.
Upon submission, every sub-job will be associated with an individual identifier (job ID), and beside
that a common job ID will be assigned to the whole set of jobs. This common id is used to list
status or retrieve output of all jobs at once2.

The job that was launched was the following (truncated - JDL syntax):

[
JobType = "Parametric";
Executable = "/bin/civet-launch.sh";
Arguments = "ng-maat-server4.maat-g.com /grid/neugrid/data/US-ADNI/_PARAM_ /grid/neugrid/share/US-ADNI-CIVET ADNI";
StdOutput = "civet.out";
StdError = "civet.out";
Requirements = Member("VO-neugrid-civet", other.GlueHostApplicationSoftwareRunTimeEnvironment);
OutputSandbox = {"civet.out"};
RetryCount = 1;
ShallowRetryCount = 10;
Parameters = {
"ADNI_002_S_0295_MR_MP-RAGE_REPEAT_br_raw_1_S13407_I13721.mnc.gz",
"ADNI_002_S_0295_MR_MP-RAGE_REPEAT_br_raw_1_S21855_I28560.mnc.gz",
"ADNI_002_S_0295_MR_MP-RAGE_REPEAT_br_raw_1_S32679_I55276.mnc.gz",
"ADNI_002_S_0295_MR_MP-RAGE_REPEAT_br_raw_1_S54060_I114209.mnc.gz",
"ADNI_002_S_0295_MR_MP-RAGE_br_raw_1_S13408_I13722.mnc.gz",
"ADNI_002_S_0295_MR_MP-RAGE_br_raw_1_S21856_I28561.mnc.gz",
"ADNI_002_S_0295_MR_MP-RAGE_br_raw_1_S32678_I55275.mnc.gz",
"ADNI_002_S_0295_MR_MP-RAGE_br_raw_1_S54061_I114210.mnc.gz",
"ADNI_002_S_0413_MR_MP-RAGE_REPEAT_br_raw_1_S13894_I14438.mnc.gz",
"ADNI_002_S_0413_MR_MP-RAGE_REPEAT_br_raw_1_S22558_I29706.mnc.gz",
...
...

"ADNI_941_S_1311_MR_MPRAGE_br_raw_98_S56645_I118290.mnc.gz",
"ADNI_941_S_1311_MR_MPRAGE_br_raw_98_S65346_I140246.mnc.gz",
"ADNI_941_S_1363_MR_MPRAGE_Repeat_br_raw_138_S28009_I44496.mnc.gz",
"ADNI_941_S_1363_MR_MPRAGE_br_raw_98_S28008_I44495.mnc.gz"
};
]

The executable that is launched by this job is named “civet-launch.sh”. This is an helper script that
helps the users to launch the CIVET pipeline inside the infrastructure. This script requires four
arguments:

• The LFC service hostname (ng-maat-server4.maat-g.com)

• The path to the MINC file that has to be analyzed (/grid/neugrid/data/US-ADNI/_PARAM_)

• The directory where will be stored the result (/grid/neugrid/share/US-ADNI-CIVET)

• The “prefix” that will be used by CIVET (ADNI)

The full “civet-launch.sh” script can be found in annexe 1. The main functions of this script are:
• Initialize the environment variables to be able to use CIVET and the GRID middleware.

• Test the existence of the input data and of the output directory.

• Test if the output data already exists or not. If it already exists the job is stopped.

• Create a “lock” in the output directory to be sure that the job will not be launched more

than 1 time.

• Retrieve the input data from the GRID if needed

• Format the input data properly so that it can be analysed by CIVET

• Launch the CIVET pipeline.

• Analyse the CIVET logs to see if everything goes well or not. If not, the script will report

the problem in the output file of the job.

2 For more information about parametric jobs, please refer to :
http://wiki.egee-see.org/index.php/Parametric_Jobs

 15

3.2.3 The data challenge lifetime

The first hours of the data challenge were difficult. In the following image, a timeline of the first
24 hours of the data challenge is resumed.

3-3: The first hours of the data challenge

What can be easily seen in this previous image is that some problems appeared during the first
hours of the data challenge.
The data challenge was launched Friday 28th of August 2009 at 3pm CET (t0 in the image) with a
basic glite-UI command line:

glite-wms-job-submit –output civet_us-adni_exec.id –a civet_us-adni_exec.jdl

Connecting to the service https://ng-maat-server10.maat-g.com:7443/glite_wms_wmproxy_server

====================== glite-wms-job-submit Success ======================

The job has been successfully submitted to the WMProxy
Your job identifier is:

https://ng-maat-server10.maat-g.com:9000/LXgmGJfb6ak7Ef2z9ElSiw

The job identifier has been saved in the following file:
/home/jerome/civet_us-adni_exec.id

==

During the first 15 minutes, WMS was generating the 6235 individual jobs from the parametric job
that was launched and to schedule everything on the 2 DACs. At this moment all the team was
monitoring with a lot of attention everything and this is why a small problem was discovered at
FBF. Indeed the job were scheduled to the both DACS properly by WMS but the FBF site BDII
service was not reporting properly this information. After a really quick investigation it was figured
out that the problem was the version of the site BDII service that was installed at FBF that had a
bug. Thus, it was decided to update this service. The update went very well even with the ongoing
data challenge and after a few minutes, all the needed information was displayed properly:

 16

- CE: ng-ki-server5.ki.se:2119/jobmanager-lcgpbs-neugrid
 - FreeCPUs 0
 - TotalCPUs 96
 - RunningJobs 96
 - WaitingJobs 2579
- CE: srv5.fatebenefratelli.it:2119/jobmanager-lcgpbs-neugrid
 - FreeCPUs 0
 - TotalCPUs 88
 - RunningJobs 88
 - WaitingJobs 2670

As one can see in the previous output, all the jobs were not submitted to the infrastructure. This
was done after more or less 30 minutes.

Everything was running as expected during more or less 12 hours but at some point during the
week-end, the FBF site disappeared from the GRID information system (t1 in the image). After
some investigations, it appeared that none of the servers of the site was accessible anymore. At
this time, everybody was quite stressed because more than 3000 jobs were already scheduled to
this node. Of course, it occurs during the week-end and it was impossible to contact the FBF
technicians to find the problem. At this point we discovered that the WMS service did a really good
job. Indeed, after some time, WMS saw that the FBF site was done and decided to reschedule the
FBF jobs to the KI site. This was a really good reaction from the GRID (t1+2h).

Nevertheless, this good WMS behaviour induced a new problem due to our lack of experience in
this kind of data challenge. Indeed, when WMS re-scheduled the FBF jobs on the KI node, this
later was completely overloaded by all the jobs that were in the CE queue. We managed to
maintain the CE up and running for some time but at some point. We decided to restart the server
and to limit the maximum queue length to 3000 jobs (t2). After the reboot, everything went better
thanks to this limitation.

After the week end, the FBF technicians explained that there was a power cut in the server room
because one of the power switches (16Amp only) didn’t guarantee the correct server feeding. It
has been modified with a 25 Amp and also the line-power source of the server has been changed.

After those problems everything went well for the rest of the data challenge.

3.3 Conclusion

This new AC/DC2 was created to test the neuGRID grid resources but, this time, compared to
AC/DC1, this test aimed to be more computing and data intensive in order to test the production
sites. It was decided to create a data challenge on the US-ADNI data. The challenge consisted of
the analysis of each scan of the US-ADNI data using the CIVET pipeline.

This test allowed us to see the robustness of the gLite grid infrastructure that is currently used in
the neuGRID project. Indeed, despite some difficulties in the first hours of the data challenge, all
the jobs completed properly (from a GRID point of view). These difficulties were in fact very
positive and allow us to improve the configuration of the DACS sites.

 17

4 Conclusion

The design and execution of tests over large infrastructures (such as neuGRID) is a central task.

The test must ensure the correct operation of the technology upon which the project relies. In the
neuGRID project, this means that we must ensure that there will not be problems related to gLite
middleware operation nor configuration, this is the role of “AC/DC” tests.

With an in-depth analysis, WP11 has found some key points in which the developed tests must be
focused:

• How to test: there are two approaches, the first being the “per service”, in which all the
services are tested in an independent way. The second option is to test from an upper
layer, in which high level operations are launched to the grid, to ensure the correct
operation of these non-atomic processes. In WP11, the second approach has been
selected. The reason for this is that WP11 must test the infrastructure under the point of
view of the grid user, which will work with the grid through interfaces, and not directly over
the services.

• Reporting: Tests should detect malfunctions of the infrastructure, and generate reports to
give the correct feedback to WP8. These reports must be clear enough to give key clues to
WP8 in order to determine and solve the malfunction of the system.

• Modularity: Tests must be developed in a modular way, able to be run in an automatic
way, clearly determining the malfunctioning parts, and allowing the reproduction of the
encountered errors.

• Easy to use: Tests must present an easy interface with few parameters covering all the
possibilities being offered to the programmers.

• Generality: Tests must be as general as possible, allowing for changes in the
infrastructure, should the necessity arise.

• Performance: Tests must give a generic performance measure of the basic grid
operations, to rapidly detect some problems related to the throughput.

Indeed, a second type of tests called “Story Lines” will be the second challenge for WP11. In this
point, a deep mining of the User Requirements specification, which will be released on month 24
too, will give WP8 the guides to develop tests to validate the neuGRID services from the users’
point of view.

 18

5 List of Abbreviations

BDII Berkeley Database Information Index

CE Computing Element

DPM Disk Pool Manager

EGEE Enabling Grids for E-sciencE

gLite EGEE Grid middleware stack

IS Information System (grid-level)

LSF Local Sharing Facility

LB Logging and Bookkeeping

neuGRID
platform

neuGRID services + gLite middleware

POC neuGRID Proof Of Concept sub-infrastructure – neuGRID test-bed

PROD neuGRID Production sub-infrastructure

SE Storage Element

UI User Interface

VOMS Virtual Organization Membership Service

WN Worker Node

WMS Workload Management System

 19

6 ANNEX 1: The civet-launch.sh script

#!/bin/bash
CIVET
neuGRID 2009
Author: Jerome Revillard

v1.0: Initial version.
v1.1:
-Add the possibility to specify where to store th e result.
-Add a lot of checks
v1.2: 26/06/2009
-Launch mincreshape on the mnc file before CIVET execution to be sure to have a well
formatted mnc file

set -x

echo "Script launched with the following parameters :"
echo " -> $@"
echo "On:"
echo " -> `hostname -f`"

export CIVET_PATH=/opt/Quarantines/200906/
SOURCE_DATA=input/
OUTPUT_DATA=output/
CURRENT_DIR=`pwd`

mkdir -p $SOURCE_DATA $OUTPUT_DATA

functions

#this function remove the lock before existing
function quit {
 lfc-rm -r $LFC_OUTPUT_DIR/.$CIVET_RESULT
 exit $1
}

Make the different tests before launching the pip eline

Number of parameters
if [$# -ne 4]; then
 echo "Wrong number of parameters:"
 echo " 1. LFC host,"
 echo " 2. LFN of the input data (/grid/neugri d/..../xxxxx.mnc.gz file),"
 echo " 3. LFN directory where to put the oupu t data (/grid/neugrid/..../ directory),"
 echo " 4. civet prefix to use."
 echo "Aborting."
 exit 1
fi

Assign variables.
LFC_HOST=$1
INPUT_DATA=$2
#Remove the slash at the end of the directory name if exists.
case "$3" in
 */) LFC_OUTPUT_DIR=${3%/} ;;
 *) LFC_OUTPUT_DIR=$3 ;;
esac
CIVET_PREFIX=$4
FILENAME_INPUT=${INPUT_DATA##*/}
case $FILENAME_INPUT in
 *_t1.mnc.gz | *_t2.mnc.gz | *_pd.mnc.gz)
 CIVET_PATIENTID=`TMP_ID=${FILENAME_INPUT##${CIVE T_PREFIX}_} && echo
${TMP_ID%_*}`
 CIVET_PRE_OPERATION=0
 ;;
 *.mnc.gz)
 CIVET_PATIENTID=`TMP_ID=${FILENAME_INPUT##${CIVE T_PREFIX}_} && echo
${TMP_ID%.mnc.gz}`

 20

 CIVET_PRE_OPERATION=1
 ;;
 *_t1.mnc | *_t2.mnc | *_pd.mnc)
 CIVET_PATIENTID=`TMP_ID=${FILENAME_INPUT##${CIVE T_PREFIX}_} && echo
${TMP_ID%_*}`
 CIVET_PRE_OPERATION=2
 ;;
 *.mnc)
 CIVET_PATIENTID=`TMP_ID=${FILENAME_INPUT##${CIVE T_PREFIX}_} && echo
${TMP_ID%.mnc}`
 CIVET_PRE_OPERATION=3
 ;;
 *)
 echo "Supported files extentions are: *_t1.mnc.g z | *_t2.mnc.gz | *_pd.mnc.gz
| *.mnc.gz | *.mnc"
 exit 10
 ;;

esac
CIVET_RESULT=civet_output_${FILENAME_INPUT%%.*}.tgz

LFC connection
export LFC_HOST=$LFC_HOST
lfc-ping &>/dev/null
if [$? != 0]; then
 echo "Unable to communicate with the LFC"
 exit 20
fi

Output directory existence
exec_result=`lfc-ls -ld $LFC_OUTPUT_DIR`
if [$? == 0]; then
 case $exec_result in
 d*) ;;

 *) echo "$LFC_OUTPUT_DIR is no t a directory"
 exit 30
 ;;
 esac
else
 echo "$LFC_OUTPUT_DIR does not exist or you cannot access it."
 exit 40
fi

Create a lock so that this user does not launch 2 times the same job on the same data with the
same parameters...
(allow also to verify that we can write into $LFC _OUTPUT_DIR)
exec_result=`lfc-mkdir $LFC_OUTPUT_DIR/.$CIVET_RESU LT 2>&1`
if [$? != 0]; then
 exec_result=`echo "$exec_result"|grep 'File exists '`
 if ["$exec_result" != ""]; then
 echo "You probably already launched this pipeline . The lock file already exists"
 echo "If you are sure that no other pipeline is c urrently executed with the same
parameters,"
 echo "then delete the following directory: $LFC_O UTPUT_DIR/.$CIVET_RESULT"
 exit 50
 else
 echo "Unable to create the lock directory: $LFC_O UTPUT_DIR/.$CIVET_RESULT"
 echo "Verify that you have write access to the $L FC_OUTPUT_DIR directory"
 exit 60
 fi
fi

Trap the TERM, SIGINT and SIGTERM signals to prop erly purge the lock files before leaving the
script
trap "quit 9999" SIGTERM
trap "quit 9999" TERM
trap "quit 9999" SIGINT

Verify if the output file already exists
exec_result=`lfc-ls $LFC_OUTPUT_DIR/$CIVET_RESULT 2 >&1`
if [$? != 0]; then
 exec_result=`echo "$exec_result"|grep 'No such fil e or directory'`
 if ["$exec_result" == ""]; then
 echo "Unable to verify if the output file $LFC_OU TPUT_DIR/$CIVET_RESULT already
exists."
 echo "The process will continue but will fail if it's the case."
 fi

 21

else
 echo "You probably already launched this pipeline. The output file already exists"
 echo "If you want to launch it again, move or remo ve the $LFC_OUTPUT_DIR/$CIVET_RESULT file."
 quit 70
fi

Retrieve data or use already existing one

if [-f $INPUT_DATA]; then
 echo "Processing already available data: $INPUT_DA TA"
 mv $INPUT_DATA $SOURCE_DATA/$FILENAME_INPUT || qui t 80
else
 cd $SOURCE_DATA
 echo "Retrieving input data: $INPUT_DATA"
 lcg-cp -v -D srmv2 lfn:$INPUT_DATA $FILENAME_INPUT || quit 81
 cd -
fi

Sourcing the CIVET environment

source $CIVET_PATH/init.sh

Preparation of the data if needed

if [$CIVET_PRE_OPERATION == 0]; then
 # *_t1.mnc.gz | *_t2.mnc.gz | *_pd.mnc.gz
 cd $SOURCE_DATA
 gzip -df $FILENAME_INPUT
 mv ${FILENAME_INPUT%%.*}.mnc ${FILENAME_INPUT%%.*} .mnc.tmp
 mincreshape -transverse +direction ${FILENAME_INP UT%%.*}.mnc.tmp ${FILENAME_INPUT%%.*}.mnc
|| quit 82
 rm -f ${FILENAME_INPUT%%.*}.mnc
 cd -
elif [$CIVET_PRE_OPERATION == 1]; then
 # .mnc.gz files
 cd $SOURCE_DATA
 gzip -df $FILENAME_INPUT
 mincreshape -transverse +direction ${FILENAME_INP UT%%.*}.mnc ${FILENAME_INPUT%%.*}_t1.mnc ||
quit 83
 rm -f ${FILENAME_INPUT%%.*}.mnc
 cd -
elif [$CIVET_PRE_OPERATION == 2]; then
 # *_t1.mnc | *_t2.mnc | *_pd.mnc files
 cd $SOURCE_DATA
 mv $FILENAME_INPUT $FILENAME_INPUT.tmp
 mincreshape -transverse +direction $FILENAME_INPUT .tmp $FILENAME_INPUT || quit 84
 rm -f $FILENAME_INPUT.tmp
 cd -
elif [$CIVET_PRE_OPERATION == 3]; then
 # .mnc files
 cd $SOURCE_DATA
 mincreshape -transverse +direction $FILENAME_INPUT ${FILENAME_INPUT%%.*}_t1.mnc || quit 85
 rm $FILENAME_INPUT
 cd -
fi

Pipeline Execution

CIVET_CMD="$CIVET_PATH/CIVET/CIVET_Processing_Pipel ine -sourcedir $CURRENT_DIR/$SOURCE_DATA -
targetdir $CURRENT_DIR/$OUTPUT_DATA -prefix $CIVET_ PREFIX $CIVET_PATIENTID -lsq12 -spawn -granular -
run"

echo "Launching the Civet Pipeline: $CIVET_CMD"
$CIVET_CMD || quit 90

Test if CIVET was executed properly.
FAILED_OP=`ls $CURRENT_DIR/$OUTPUT_DATA/$CIVET_PATI ENTID/logs/ |grep .failed`
ERROR=0
if ["$FAILED_OP" != ""]; then
 for failed_op in "$FAILED_OP"; do
 case $failed_op in
 *.verify_image.failed)
 ;;
 *)

 22

 ERROR=1;
 echo
"== ======================================"
 echo "Content of ${failed_op%%.failed}.log"
 echo
"== ======================================"
 cat
$CURRENT_DIR/$OUTPUT_DATA/$CIVET_PATIENTID/logs/${f ailed_op%%.failed}.log
 echo
"== ======================================"
 ;;
 esac
 done
fi
if [$ERROR == 1];then
 echo "Errors were found in the pipeline execution! "
 quit 100
fi

echo "Civet output available inside $OUTPUT_DATA"

echo "Compressing the output..."
cd $OUTPUT_DATA
tar -h -c *|gzip>$CIVET_RESULT

Pipeline result upload

x=1
UPLOAD_DONE=0
while [$x -le 5]; do
 RESULT=`lcg-cr -v -l lfn:$LFC_OUTPUT_DIR/$C IVET_RESULT $CIVET_RESULT 2>&1`
 if [$? != 0]; then
 sleep 30
 x=$(($x + 1))
 else
 echo "Upload error:"
 echo $RESULT
 x=6
 UPLOAD_DONE=1
 fi
done

if [$UPLOAD_DONE == 0]; then
 echo "UNABLE TO UPLOAD THE RESULT!"
 quit 110
fi
cd -

END

echo "====================================== Finish ed =="
echo " You can download the output of the algorithm using:"
echo " export LFC_HOST=$LFC_HOST && \\"
echo " lcg-cp lfn:$LFC_OUTPUT_DIR/$CIVET_RESULT ./$ CIVET_RESULT"
echo "=== ==="
quit 0

